scholarly journals Effect of Harvest Maturity, Storage, and Cultivar on Strawberry Fruit Aroma Volatiles

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 818B-818 ◽  
Author(s):  
Charles F. Forney ◽  
Michael A. Jordan

`Annapolis', `Cavendish', `Honeoye', `Kent', and `Micmac' strawberry fruit (Fragaria ×ananassa Duch.) were harvested underripe (75% to 90% red) or fully ripe. Fruit were stored at 0C for 5 days followed by 2 days at 15C. Volatiles were trapped onto Tenax-GR from the headspace over fruit before and after storage and analyzed using GC-MS. Volatile esters identified in headspace included methyl and ethyl butanoate, methyl and ethyl hexanoate, methyl and ethyl 3-methylbutanoate, 3-methylbutyl acetate, hexyl acetate, and methyl 2-methylbutanoate. Headspace concentrations of volatile esters over freshly harvested strawberries averaged 1.3 and 6.8 μmol·m–3 for underripe and ripe fruit, respectively. After 7 days of storage, volatile concentrations increased in both underripe and ripe fruit to 6.3 and 12.2 μmol·m–3, respectively. There were quantitative and qualitative differences between cultivars. Total volatile concentrations were 16.0, 8.1, 5.7, 2.4, and 0.9 μmol·m–3 in the headspace over `Annapolis', `Kent', `Micmac', `Cavendish', and `Honeoye', respectively. `Annapolis' had the highest concentrations of methyl and ethyl butanoate, while `Micmac' had the highest concentrations of methyl and ethyl hexanoate. Volatile concentrations at harvest increased 5.7, 1.9, 1.7, 1.4, and 1.3 times during storage in `Kent', `Annapolis', `Micmac', `Cavendish', and `Honeoye', respectively. Results indicate that strawberry fruit continue to produce aroma volatiles after harvest.

HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 303-305 ◽  
Author(s):  
Mette Larsen ◽  
Christopher B. Watkins

Firmness and aroma composition of strawberry fruit (Fragaria ×ananassa Duch. cv. Pajaro) stored in air or treated with 20% CO2 for up to 12 days at 0C were analyzed upon removal from storage. Fruit firmness increased after 2 days in CO2, while the composition of aroma compounds in the fruit was unaffected at this time. Ethanol and ethyl hexanoate accumulated after 3 days during high CO2 treatment, but these compounds usually decreased during subsequent cold storage in air. Ethyl butanoate and ethyl acetate also accumulated but continued to increase after 6 and 9 days of CO2 storage, respectively. This study suggests that treatment of strawberry fruit with CO2 after harvest, followed by air storage at 0C, can maintain firmness while minimizing off-flavor development.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3253 ◽  
Author(s):  
Carolina Muñoz-González ◽  
María Pérez-Jiménez ◽  
Celia Criado ◽  
María Ángeles Pozo-Bayón

This paper evaluates, for the first time, the effects of ethanol concentration on the dynamics of oral (immediate and prolonged) aroma release after wine consumption. To do this, the intraoral aroma release of 10 panelists was monitored at two sampling points (0 and 4 min) after they rinsed their mouths with three rosé wines with different ethanol content (0.5% v/v, 5% v/v and 10% v/v) that were aromatized with six fruity esters (ethyl butanoate, isoamyl acetate, ethyl pentanoate, ethyl hexanoate, ethyl octanoate and ethyl decanoate). Overall, the results indicated that the extent of the effects of ethanol content on the oral aroma release were influenced by the subject, the ethanolconcentration and the type of aroma compound. This effect was also different in the immediate than in the prolonged aroma release. In the first in-mouth aroma monitoring, an increase in the ethanol content provoked a higher release of the more polar and volatile esters (ethyl butanoate, ethyl pentanoate), but a lower release for the more apolar and less volatile esters (ethyl octanoate, ethyl decanoate). Regarding the prolonged oral aroma release, an increase of ethanol content in wine increased the oral aroma release of the six esters, which might also increase the fruity aroma persistence in the wines. Future works with a higher number of individuals will be needed to understand the mechanisms behind this phenomenon.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yunduan Li ◽  
Yuanyuan Zhang ◽  
Xincheng Liu ◽  
Yuwei Xiao ◽  
Zuying Zhang ◽  
...  

Volatile compounds principally contribute to flavor of strawberry (Fragaria × ananassa) fruit. Besides to genetics, cultivation conditions play an important role in fruit volatile formation. Compared to soil culture as control, effects of substrate culture on volatile compounds of two strawberry cultivars (‘Amaou’ and ‘Yuexin’) were investigated. GC-MS analysis revealed significant difference in volatile contents of ‘Amaou’ strawberry caused by substrate culture. No significant effect was observed for cultivar ‘Yuexin’. For ‘Amaou’ strawberry from soil culture produced higher volatile contents compared with substrate culture. This difference is contributed by high contents of esters, lactones, ketones, aldehydes, terpenes, hydrocarbons, acids, furans and phenols in ‘Amaou’ strawberry fruit from soil culture. Furanones, beta-linalool, trans-Nerolidol and esters are major contributor to strawberry aroma, whose contents are higher in soil culture planted fruit when compared to substrate culture. Moreover, strawberry fruit from soil culture had higher transcripts related to volatile biosynthesis were observed, including FaQR, FaOMT, FaNES1, FaSAAT and FaAAT2.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4153
Author(s):  
Doaa Abouelenein ◽  
Ahmed M. Mustafa ◽  
Simone Angeloni ◽  
Germana Borsetta ◽  
Sauro Vittori ◽  
...  

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC–MS method, in addition to analysis of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03–96.88% of the total volatile compositions. Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were ethyl hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45 °C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcohols in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 245 ◽  
Author(s):  
Małgorzata A. Majcher ◽  
Magdalena Scheibe ◽  
Henryk H. Jeleń

The volatiles of cape gooseberry fruit (Physalis peruviana L.) were isolated by solvent-assisted flavor evaporation (SAFE), odor active compounds identified by gas chromatography–olfactometry (GC-O) and gas chromatography–mass spectrometry (GC-MS). Quantitation of compounds was performed by headspace—solid phase microextraction (HS-SPME) for all but one. Aroma extract dilution analysis (AEDA) revealed 18 odor active regions, with the highest flavor dilution values (FD = 512) noted for ethyl butanoate and 4-hydroxy-2,5-dimethylfuran-3-one (furaneol). Odor activity values were determined for all 18 compounds and the highest was noted for ethyl butanoate (OAV = 504), followed by linalool, (E)-non-2-enal, (2E,6Z)-nona-2,6-dienal, hexanal, ethyl octanoate, ethyl hexanoate, butane-2,3-dione, and 2-methylpropanal. The main groups of odor active compounds in Physalis peruviana L. were esters and aldehydes. A recombinant experiment confirmed the identification and quantitative results.


2020 ◽  
Vol 10 (24) ◽  
pp. 8928
Author(s):  
Irena Budić-Leto ◽  
Iva Humar ◽  
Jasenka Gajdoš Kljusurić ◽  
Goran Zdunić ◽  
Emil Zlatić

Dehydration or drying of grapes is one of the most important steps in the production of Croatian traditional dessert wine Prošek. The natural sun drying of grapes is the traditionally used method in Prošek production. Alternative methods, such as dehydration under controlled conditions, have been studied as safer and faster methods than the traditional sun drying but without precise knowledge of the effect on volatile compounds. The objective of this work was to study how dehydration of grapes carried out in a greenhouse and an environmentally controlled chamber impacts on the free and glycosidically bound volatile compounds of native grape cv. ‘Maraština’. The 36 volatile compounds were identified and quantified using headspace solid-phase micro extraction coupled with gas chromatography-mass spectrophotometry (HS-SPME-GC/MS). The results showed that the aroma profile of dehydrated grapes was significantly different from that of fresh grapes. Regarding free forms, significant increases in the concentration of 2-methyl-1-propanol, 1-butanol, 2-hexen-1-ol, 1-hexanol, ethyl hexanoate, hexyl acetate, o-cymene, linalool oxide, and terpinen-4-ol and geraniol were found in greenhouse-dried grapes, whereas increases in cis-limonene-epoxide, trans-limonene epoxide, and γ-hexalactone were higher in chamber-dried grapes compared to greenhouse-dried grapes. Glycosidically bound forms of o-cymene, linalool oxide, linalool, and terpinen-4-ol were increased in both types of drying, whereas β-damascenone was increased only in greenhouse-dried grapes.


Beverages ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 59
Author(s):  
Bizuayehu M. Muche ◽  
Michael Jordan ◽  
Charles F. Forney ◽  
R. Alex Speers ◽  
H. P. Vasantha Rupasinghe

The effects of 1-methylcyclopropene (1-MCP), storage atmosphere (controlled (CA) or regular (RA)), and juice processing (clear or cloudy) on the volatile aroma compounds from McIntosh and Honeycrisp apples following 4-month storage were studied. All the major esters, aldehydes, and total volatile content from McIntosh juice were significantly affected by the two-way interaction between harvest maturity and 1-MCP treatment (p ≤ 0.01), as well as harvest maturity and storage atmosphere (p ≤ 0.001). In McIntosh juices, a remarkable reduction of all types of esters, aldehydes, most alcohols, and total volatile compounds was found when juices were prepared from 1-MCP-treated apples. In Honeycrisp, significant differences in the level of esters and the total volatile aroma was caused by storage atmosphere and juice processing techniques (p ≤ 0.001), but not by 1-MCP treatment. As compared to clear juices, cloudy juice samples from Honeycrisp had a considerably higher content of total volatiles, esters, and aldehydes.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S58-S61 ◽  
Author(s):  
R. Vidrih ◽  
E. Zlatić ◽  
J. Hribar

In the food industry, the addition of flavours is used to reinforce the aroma profile of different goods. However, interactions between starch and aroma compounds can occur, and this can impact upon aroma release and perception. In the present study, we have investigated the influence of starch type on aroma release from starch-aroma systems. The food model system used was composed of an aqueous starch dispersion (1 g dry starch/100 g dispersion) and 10 aroma compounds (ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl pentanoate, methyl hexanoate, ethyl hexanoate, methyl ethyl propanoate, hexyl acetate, 3-hexenol, and phenyl methyl acetate). Different commercially available starches were used: Amilogels P, K, PDP, G, MVK, HP, OK and HPW, and carrageenan (Amilogel CAR) and guar gum (Amilogel GG). Aroma release from these starch-aroma systems into the gas phase above food (headspace) were monitored by GC-MS analysis with a solid-phase micro-extraction technique. The smell of the starch-aroma system was also evaluated sensorially by a trained panel. The release of aroma compounds from the different starch-aroma systems was statistically significant (<I>P</I> < 0.0001) for all of the aroma compounds, with the exception of ethyl pentanoate. A correlation between the concentration of individual aroma compounds in the headspace and the sensory evaluation (smell) was seen. Starch-aroma systems comprising corn starch (Amilogel G), physically modified starches that are soluble in cold water (Amilogels K, PDP), and hydroxypropyl distarch phosphate (Amilogels HP) had sensorially superior smells compared to the other types of starches tested. At the same time, the headspace GC-MS analyses showed ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate and ethyl pentanoate to be at the highest concentrations, which are all typical aroma compounds of strawberry fruit, and which also have low perception thresholds. Dextrin-roasted starch, guar gum and carrageenan provided the lowest sensory scores, although in contrast, they more strongly retained these aroma compounds.


2000 ◽  
Vol 67 (2) ◽  
pp. 273-285 ◽  
Author(s):  
LUIGI MOIO ◽  
PAOLA PIOMBINO ◽  
FRANCESCO ADDEO

Volatile concentrates were obtained by vacuum distillation from both natural and creamy Gorgonzola cheese and isolated by continuous liquid–liquid extraction. Both were analysed by high resolution gas chromatography (HRGC), HRGC–mass spectrometry and HRGC–olfactometry. A total of 63 components were identified in the neutral extract of the natural type (21 esters, 13 ketones, 14 alcohols, 5 aldehydes, 1 sulphur compound, 7 aromatic compounds and 2 terpenes) and 52 in the creamy type (17 esters, 12 ketones, 10 alcohols, 5 aldehydes, 1 sulphur compound, 5 aromatic compounds and 2 terpenes). Ketones, whose major components were 2-nonanone and 2-heptanone, were the predominant constituents of the neutral fraction. By olfactometric analysis of the neutral extracts, 23 odour-impact compounds were found in the natural and 21 in the creamy Gorgonzola cheese. 1-Octen-3-ol, ethyl hexanoate, 2-nonanone, 2-heptanone, 2-heptanol, ethyl butanoate, 2-nonanol and 4-methylanisole were the key odorants of the natural cheese, whereas 2-heptanone, 2-heptanol, ethyl butanoate, 3-methyl thiopropanal and an unidentified constituent with a fruity odour were characteristic of the creamy Gorgonzola cheese. On the basis of high odour unity values, 2-nonanone, 1-octen-3-ol, 2-heptanol, ethyl hexanoate, methylanisole and 2-heptanone were the most important odorants of natural and creamy Gorgonzola cheese aroma.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 515C-515
Author(s):  
Charles F. Forney

Volatile compounds make a significant contribution to the quality and storage life of fresh strawberries, blueberries, and raspberries. Strawberry aroma is composed predominately of esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The major volatiles contributing to aroma include ethyl butanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, ethyl hexanoate, methyl butanoate, linalool, and methyl hexanoate. In lowbush (wild) blueberries, aroma is predominated by esters and alcohols including ethyl and methyl methylbutanoates, methyl butanoate, 2-ethyl-1-hexanol, and 3-buteneol, while highbush blueberry aroma is dominated by aromatic compounds, esters, terpenes and long chain alcohols. The aroma of raspberries is composed of a mixture of ketones and terpenes, including damascenone, ionone, geraniol, and linalool. The composition and concentration of these aroma compounds are affected by fruit maturity and storage conditions. As fruit ripen, the concentration of aroma volatiles rapidly increases. This increase in volatile synthesis closely follows pigment formation both on and off the plant. In strawberry fruit, volatile concentration increases about 4-fold in the 24-h period required for fruit to ripen from 50% red to fully red on the plant. In storage, volatile composition is affected by storage temperature, duration, and atmosphere. Postharvest holding temperature and concentrations of O2 and CO2 can alter the quantity and composition of aroma volatiles. The effects of postharvest environments on volatile composition will be discussed.


Sign in / Sign up

Export Citation Format

Share Document