scholarly journals Growth and Yield of Greenhouse Tomato with Constant or Intermittent Heating of the Root and Shoot

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 882F-882
Author(s):  
M.P.N. Gent ◽  
Y.-Z. Ma

What is the effect of constant compared to intermittent heating of the shoot and root on growth, nutrient status, and yield of greenhouse tomato (Lycopersicon esculentum Mill)? Seedlings were transplanted on 4 Mar. or 25 Mar. 1994 into troughs heated to 21C by buried tubing, either constantly, or for 12 h during the day or the night, or they were not heated. The greenhouses had either 14/14C or 22/6C day/night minimum air temperatures. After 2 weeks, the 4 Mar. transplants had the greatest leaf weight with constant root heat and least with no heat. Root weight was greater for 14/14 than 22/6 air heat. With 14/14 air heat, only the no root heat reduced leaf weight, whereas with 22/6 air heat, root heat affected leaf weight; the ranking was constant > day > night ≈ no heat. After 2 weeks, the 25 Mar. transplants had least leaf weight with no heat, and other treatments did not differ. Most nutrient concentrations were less in the 25 Mar. compared to the 4 Mar. transplants. The number of fruit, and the number and weight of marketable fruit produced by I July from 4 Mar. transplants was affected by root heat; the ranking was constant heat > day > night > no heat. The 22/6 air heat increased marketable yield, because of fewer small, irregular, and blossom end rot fruit. Root heat had no effect on yield of 25 Mar. transplants. Research supported in part by grant 93-37100-9101 from NRI Competitive grants program/USDA.

HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 914B-914
Author(s):  
M.P.N. Gent ◽  
Y.Z. Ma

What is the effect of constant compared to intermittent heating of the shoot and root on growth, nutrient status, and yield of greenhouse tomato (Lycopersicon esculentum Mill)? Seedlings were transplanted early, on 4 Mar. 1994 and 1 Mar. 1995, or late, on 25 Mar. 1994 and 31 Mar. 1995, into troughs of peat-lite mix. The troughs were heated to 21C by buried tubing, either constantly, or for 12 h during the day or the night, or they were not heated. The greenhouses had either 14/14C or 22/6C day/night minimum air temperatures. After 2 weeks, early transplants had the greatest leaf weight with constant root heat and least with no heat. Root weight was greater for 14/14C than 22/6C air heat. With 14/14C air heat, only the no-root heat reduced leaf weight, whereas with 22/6C air heat, root heat ranking was constant > day > night ≈no heat. With late transplants, only the no heat reduced leaf weight. Most nutrient concentrations were less in late than in early transplants. Number of fruit, and number and weight of marketable fruit produced by 1 July from early transplants was affected by root heat; the ranking was constant heat > day > night > no heat. The 22/6C air heat increased marketable yield because of fewer small, irregular and blossom end rot fruit. Root heat had no effect on yield of late transplants.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 189g-190
Author(s):  
Martin P.N. Gent ◽  
Yong-Zhan Ma

What is the effect of constant compared to diurnal heating of the shoot and root on growth and yield of greenhouse tomato (Lycopersicon esculentum L.)? Seedlings were transplanted on 4 or 25 Mar. 1994 into troughs that were not heated or heated to 21C by buried tubing, either constantly or for 12 h during the day or the night. The greenhouses had either 14/14C or 26/6C day/night minimum air temperatures. After 2 weeks, leaves of the 4 Mar. transplants weighed most with constant root heat and least with no heat. Roots weighed more with 14/14C than 26/6C air heat. With 14/14C air heat, only no root heat reduced leaf weight, whereas with 26/6C air heat, leaf weight was in the order: constant > day > night - no heat. After 2 weeks, leaves of the 25 Mar. transplants weighed least with no heat, and other treatments did not differ. Root heating affected yield. By 1 July, the number of fruit and the number and weight of marketable fruit produced from 4 Mar. transplants was in the order: constant heat > day > night > no heat. The 22/6C air heat increased marketable yield because fewer fruit were small, irregular, or had blossom-end rot. Root heat had no effect on yield of 25 Mar. transplants.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 607d-607
Author(s):  
M.P.N. Gent ◽  
Y.-Z. Ma

Is intermittent heating of the root zone more beneficial than constant heating for production of greenhouse tomato (Lycopersicon esculentum Mill), with diurnal variation of air temperature (DIF)? Yields were compared with 14°C day/14°C night or 22°C day/6°C night minimum air temperatures, resulting in 5 and 14°C DIF. The root zone was unheated or was heated to 20°C constantly or for 6 hours in the day, or 6 hours in the night. The greenhouse tomato cultivars Buffalo and Caruso were transplanted in early and late March in 1994 and 1995. Averaged over both years and cultivars, the yield from early March planting with 14°C DIF was greater than with 5°C DIF, 6.6 and 6.1 kg/plant, respectively, due to an increase in weight per fruit and to earlier ripening. Root zone heat increased yield compared to no heat, due to a greater number of fruit. With 5°C DIF, yields with constant and intermittent root zone heat were similar. The yields were 5.4, 6.4, 6.2, and 6.2 kg/plant with none, day, night and constant heat, respectively. With 14°C DIF, there were larger differences in yield, 5.7, 7.0, 6.6, and 7.1 kg/plant with none, day, night and constant root zone heat, respectively. However, interactions between air and root heat regimes were not statistically significant. The yield from late March planting was greater with 14°C than with 5°C DIF, but root zone heat had no effect. Research supported in part by grant 93-37100-9101 from NRI Competitive grants program/USDA.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1583
Author(s):  
Ibrahim Musa ◽  
Mohd Y. Rafii ◽  
Khairulmazmi Ahmad ◽  
Shairul Izan Ramlee ◽  
Muhammad Asyraf Md Hatta ◽  
...  

Grafting is regarded as an integral component of sustainable vegetable production. It is important in the management of soil-borne diseases, and reports suggest that grafting with viable rootstocks can enhance crop growth and yield. This research was conducted using splices and cleft grafting techniques to investigate graft compatibility among varieties of high yielding eggplant scion (MCV1, MCV2, CCV1, CCV2, CCV3, NCV, and TCV) grafted onto wild rootstocks (MWR, BWR, and TWR) to study their morphophysiological and yield characteristics. High yielding scions grafted onto wild relative rootstocks were compared with two controls including self-grafted and non-grafted. All the scion had a high rate of germination (≥95%) and remarkable graft success (100%) was recorded in MCV1, MCV2, and TCV using the cleft techniques. Generally, the use of rootstocks resulted in higher total and marketable fruit yield compared to the non-grafted and self-grafted scion plants, respectively. In particular, MWR and TWR rootstock conferred the highest vigour to the scion, resulting in the highest values recorded for total and marketable fruit yield, number of fruits per plant and average fruit weight. A similar result was obtained in fruit length and diameter, where long and wide fruits were observed in scions grafted onto MWR and TWR rootstocks, respectively. Grafting of high yielding eggplant scion onto resistant MWR, BWR and TWR eggplant rootstock was found to be beneficial for eggplant cultivation. The remarkable compatibility and vigour of the rootstock with scion led to the improvement in total and marketable yield of the fruits. As such, it can be concluded that the use of wild relative rootstocks of eggplant species can be a valuable method of improving eggplant production.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 759A-759
Author(s):  
Martin P.N. Gent*

Shading a greenhouse increased the fraction of tomatoes that were marketable, and the marketable yield, in a comparison of greenhouse tomato yields across years, in some of which the greenhouses were shaded. In 2003, the yield and quality of greenhouse tomatoes were compared directly when grown in spring and summer in Connecticut in identical greenhouses that differed only in the degree of shade. Each half of four greenhouses was either unshaded or shaded using reflective aluminized shade cloth rated to reduced light transmission by 15%, 30%, or 50%. Each shade treatment was repeated in two houses. Tomatoes were germinated in February and transplanted in March The houses were shaded when fruit began to ripen in early June. Picking continued through August. The effect of shade on total yield developed gradually. Yields in June were unaffected by shade, but in August yield under no shade was about 30% higher than under 50% shade. In contrast, there was an immediate effect of shade on fruit size. Fruit picked in June from plants under 50% shade was 16% smaller than from plants grown under no shade. This difference declined later in the season, to 6 and 9%, in July and August respectively. The highest yield of marketable fruit in 2003 was picked from houses under no shade, but this was only 10% more than picked from the houses under 50% shade. Shade increased the fraction of marketable fruit, from 54% under no shade to 63% under 50% shade. Certain defects were decreased by shade. For instance the fraction of fruit with cracked skin was decreased from 33% to 25%. In general, effects on fruit quality varied linearly with the degree of applied shade.


Author(s):  
Muhammad Akbar Anjum ◽  
Hafiza Muniba Din Muhammad ◽  
Rashad Mukhtar Balal ◽  
Riaz Ahmad

Onion is one of the most valuable vegetables all over the world. It prefers loose, well drained loamy soils rich in organic matter. In calcareous soils, the growth and yield of onion crop is low. The objective of the present investigation was to study the performance of two onion cultivars (Super Selection and Nasarpuri) in calcareous soil by adopting proper planting system. The crop was planted under two planting systems i.e. flat bed and ridge system. Significantly higher leaf weight was recorded on ridges than flat beds. Root weight was significantly higher in cultivar Nasarpuri than Super Selection. Moreover, plants on ridges attained more root weight than those grown on flat beds. Larger equatorial and polar diameters of bulbs were recorded in Super Selection, and also in the plants grown on ridges. The bulbs harvested from ridges had higher moisture content, than those harvested from flat beds. The neck diameter was significantly greater in Nasarpuri as compared with Super Selection. Number of splited bulbs and number of splits in bulbs were not affected by the cultivars and planting systems. The highest bulb weight was recorded from ridges in cv. Nasarpuri, followed by Super Selection. The significantly greater economic yield, biological yield and harvest index were obtained from the plants grown on ridges. Leaf weight showed significant association with neck diameter, bulb weight, economic yield and biological yield. Bulb weight showed significant correlation with economic yield, biological yield and harvest index.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1012A-1012
Author(s):  
Oleg Daugovish ◽  
Doug Gubler

Strawberry anthracnose caused by Colletotrichum acutatum may kill strawberry plants or reduce plant vigor and marketable yield, resulting in multimillion dollar losses to strawberry industry. The fungus is often carried with transplants from nurseries to production fields undetected. The studies in one summer and two winter seasons near Oxnard, Calif., evaluated 30-second pre-plant dipping in ten fungicide solutions or water washing of transplants inoculated with C. acutatum as a means of reducing infection and improving fruit yield. In summer-planted `Baeza,' the pathogen caused severe die-back and reduced marketable fruit yield 89% in inoculated, untreated controls compared to non-inoculated plants while plants dipped in Switch (cyprodynil + fludioxynil) at 0.38 g/L had 33% yield reduction. Other fungicides provided even less protection, resulting in 53% to 89% yield losses. During cooler winter seasons the pathogen remained latent and lesions appeared on `Camarosa' when the day-night air temperatures reached 16 °C or more, 7–14 days after rain. None of the treatments reduced fruit lesion development, however, among plants dipped in strobilurin fungicides only 3% had C. acutatum symptoms (including early die-back) as opposed to 26% in inoculated, untreated controls. Plants dipped in Switch, Quadris (azoxystrobin), or Pristine (pyraclostrobin + boscalid) yielded similar to non-inoculated, untreated controls in 2003 and 10% to 12% more in 2005. These studies showed that strobilurin fungicides did not prevent fruit infection (indicating need for foliar in-season control) but improved marketable yield compared to the inoculated, untreated plants. Temperatures over 16 °C and precipitation may significantly increase disease development.


2009 ◽  
Vol 19 (2) ◽  
pp. 395-399 ◽  
Author(s):  
Hanna Y. Hanna

Cultivars and growing media are important components of a successful greenhouse tomato (Solanum lycopersicum) operation. Two studies were conducted simultaneously and independently in two 30 × 96-ft greenhouses in Spring 2006 and 2007 (January–July) to assist producers in selecting appropriate cultivars and reducing production cost. The first study was conducted to evaluate yield, fruit weight, fruit quality, and shelf life of ‘Geronimo’, ‘Quest’, and ‘Trust’ tomatoes planted in perlite and pruned to three or four fruit per cluster. The second study was conducted to determine the initial cost of perlite, pine bark, and rockwool growing media and their effect on yield of ‘Quest’ pruned to three or four fruit per cluster. ‘Geronimo’ produced the highest total marketable yield and ‘Trust’ produced the lowest. ‘Trust’ produced more cull yield and lower fruit weight than ‘Geronimo’ or ‘Quest’. Pruning clusters to three fruit increased total marketable yield and fruit weight, and reduced cull yield of all cultivars. Only ‘Geronimo’ produced higher early marketable yield at four fruit per cluster. All cultivars produced higher early marketable yield in 2007 than in 2006. Tested cultivars had similar fruit content of potassium and sodium and similar concentration of soluble solids. ‘Trust’ fruit had a higher pH than the other two cultivars. About 92% of ‘Quest’ tomatoes remained marketable after storage at 67 °F for 1 week. ‘Geronimo’ and ‘Trust’ had only 83% and 78% marketable fruit, respectively, under the same conditions. Initial costs to grow greenhouse tomatoes in perlite were higher than in rockwool, and were the lowest in pine bark. Plants grown in perlite produced higher total marketable yield than plants grown in either of the other media. They produced lower cull yield than plants grown in rockwool, but produced similar cull yield to plants grown in pine bark. Pruning clusters to three fruit increased total marketable yield and fruit weight in both studies. Pruning clusters to four fruit increased cull yield in both studies regardless of planting year.


1996 ◽  
Vol 6 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Laurie Hodges ◽  
James R. Brandle

Windbreaks reduce wind speed and modify the microclimate in sheltered areas. Many producers use wind barriers in their production systems, but few producers recognize all of the benefits available or understand the principles involved in windbreak function and design. Wind has direct and indirect effects on plant growth and development. Direct effects include soil abrasion, increased transpiration, and lodging. Indirect effects are based on changes in the crop microclimate, which influence plant growth and yield. Windbreaks increase soil and air temperatures and can extend the growing season in sheltered areas, resulting in increased crop development, earlier crop maturity, and market advantage. Plant-water relations and irrigation efficiency are improved by shelter. Overall, modifications to the microclimate in sheltered areas contribute to 5% to 50% higher crop yields. Winds in excess of about 5 m·s−1 (1.0 m·s−1 = 2.25 miles/h; miles/h × 0.447 = m·s−1) result in wind erosion and soil abrasion and may cause a loss of crop stand. Wind speeds below 5 m·s−1 may have an equally adverse impact on crop quality and marketable yield. In both cases, wind-breaks can reduce damage effectively in sheltered areas. Wind protection reduces certain problems associated with plasticulture under windy conditions.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


Sign in / Sign up

Export Citation Format

Share Document