scholarly journals Leaf Age Affects Gas Exchange in Okra

HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1017-1019 ◽  
Author(s):  
W.F. Whitehead ◽  
B.P. Singh

Two studies were conducted to assess the effects of leaf aging on gas exchange in okra [Abelmoschus esculentus (L.) Moench] leaves. Gas exchange was measured at 6- to 10-day intervals starting 15 days after leaf emergence (DFE) and continuing until senescence at 50 DFE. Rates of transpiration (E), stomatal conductance (gs) and CO2 exchange (CER) increased as leaves matured up to ≈25 DFE, about full leaf expansion. Transpiration rate, gs, and CER declined after 25 DFE and as leaves aged further. Internal leaf CO2 concentration (Ci) was higher in old than young leaves. This study suggests that the most efficient okra canopy would maximize exposure of 25-day-old leaves to sunlight.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sylvain Pincebourde ◽  
Jérôme Ngao

Herbivore insects have strong impacts on leaf gas exchange when feeding on the plant. Leaf age also drives leaf gas exchanges but the interaction of leaf age and phloem herbivory has been largely underexplored. We investigated the amplitude and direction of herbivore impact on leaf gas exchange across a wide range of leaf age in the apple tree–apple green aphid (Aphis pomi) system. We measured the gas exchange (assimilation and transpiration rates, stomatal conductance and internal CO2 concentration) of leaves infested versus non-infested by the aphid across leaf age. For very young leaves up to 15 days-old, the gas exchange rates of infested leaves were similar to those of non-infested leaves. After few days, photosynthesis, stomatal conductance and transpiration rate increased in infested leaves up to about the age of 30 days, and gradually decreased after that age. By contrast, gas exchanges in non-infested leaves gradually decreased across leaf age such that they were always lower than in infested leaves. Aphids were observed on relatively young leaves up to 25 days and despite the positive effect on leaf photosynthesis and leaf performance, their presence negatively affected the growth rate of apple seedlings. Indeed, aphids decreased leaf dry mass, leaf surface, and leaf carbon content except in old leaves. By contrast, aphids induced an increase in leaf nitrogen content and the deviation relative to non-infested leaves increased with leaf age. Overall, the impacts of aphids at multiple levels of plant performance depend on leaf age. While aphids cause an increase in some leaf traits (gas exchanges and nitrogen content), they also depress others (plant growth rate and carbon content). The balance between those effects, as modulated by leaf age, may be the key for herbivory mitigation in plants.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


Hoehnea ◽  
2017 ◽  
Vol 44 (2) ◽  
pp. 236-245 ◽  
Author(s):  
Juliana Moreno Pina ◽  
Sérgio Tadeu Meirelles ◽  
Regina Maria de Moraes

ABSTRACT This study aimed to investigate the importance of leaf age, meteorological conditions and ozone concentration (O3) on gas exchange of Psidium guajava ‛Paluma'. Saplings were grown and exposed in standard conditions in the city of São Paulo, in six periods of three months with weekly measurements in young and mature leaves. Gas exchanges were higher in young leaves for almost the entire experiment. Mature leaves showed greater reduction in gas exchange. The multivariate analysis of biotic and abiotic variables indicated that vapor pressure deficit (VPD), O3 concentration and radiation were the main variables associated with gas exchange decrease in young leaves. In mature leaves the influence of VPD is lower, but the temperature importance is higher. Moreover, the opposition between assimilation and O3 is more evident in mature leaves, indicating their greater sensitivity to O3.


2010 ◽  
Vol 40 (6) ◽  
pp. 1290-1294 ◽  
Author(s):  
Inês Cechin ◽  
Natália Corniani ◽  
Terezinha de Fátima Fumis ◽  
Ana Catarina Cataneo

The effects of water stress and rehydration on leaf gas exchange characteristics along with changes in lipid peroxidation and pirogalol peroxidase (PG-POD) were studied in mature and in young leaves of sunflower (Helianthus annuus L.), which were grown in a greenhouse. Water stress reduced photosynthesis (Pn), stomatal conductance (g s), and transpiration (E) in both young and mature leaves. However, the amplitude of the reduction was dependent on leaf age. The intercellular CO2 concentration (Ci) was increased in mature leaves but it was not altered in young leaves. Instantaneous water use efficiency (WUE) in mature stressed leaves was reduced when compared to control leaves while in young stressed leaves it was maintained to the same level as the control. After 24h of rehydration, most of the parameters related to gas exchange recovered to the same level as the unstressed plants except gs and E in mature leaves. Water stress did not activated PG-POD independently of leaf age. However, after rehydration the enzyme activity was increased in mature leaves and remained to the same as the control in young leaves. Malondialdehyde (MDA) content was increased by water stress in both mature and young leaves. The results suggest that young leaves are more susceptible to water stress in terms of gas exchange characteristics than mature leaves although both went through oxidative estresse.


1982 ◽  
Vol 9 (4) ◽  
pp. 449 ◽  
Author(s):  
HM Rawson ◽  
NC Turner

Five cultivars of sunflower with different durations to anthesis were grown in the field either entirely on stored soil moisture (DRY), irrigated frequently throughout growth (WET), or transferred from the DRY to the WET regime at 44 days (REC 1) or at 54 days from sowing (REC 2). The expansion patterns of all leaves were followed with a view to determining which leaves responded when stress was relieved. Cultivars differed in their ability to recommence leaf expansion after water was applied to DRY crops, but any differences were related to the stage of plant development reached when water was applied. Thus in the REC 1 treatment, no leaves of early cultivars equalled the areas achieved in equivalent leaves in the WET regime, whereas the latest cultivar generated individual leaves which were 60% larger than equivalent leaves in the WET treatment. In the REC 2 treatment, few leaves of the early cultivars reached significantly larger areas than equivalent leaves in the DRY while all leaves above node 12 in the latest cultivar exceeded those in the DRY regime. Examining the data in terms of the age of leaves in the profile when the REC 1 and REC 2 treatments were applied showed that, regardless of cultivar, all leaves which were less than 15 days old (age 0 = leaf emergence) had some capacity for renewed expansion when water was applied. However, primordia which still had 15 days to go before they emerged as leaves had the greatest capacity for expansion to a potential size, and this capacity decreased progressively over their next 30 days of aging. Leaf age profiles did not explain all the difference in renewed expansion potential among cultivars: a leaf position factor at the time of water application was almost as important. Thus, the closer that leaves were to the head, the less was their capacity for renewed expansion regardless of their age. In order to achieve larger areas when water was applied, old leaves increased their duration of expansion while young leaves increased their rate of expansion. It is concluded that cultivars do not differ in their ability to 'recover' leaf area upon application of water except by virtue of their different durations to anthesis.


2003 ◽  
Vol 30 (6) ◽  
pp. 673 ◽  
Author(s):  
Hans R. Schultz

Measurements of gas exchange and stomatal conductance were made on potted and field-grown grapevines (Vitis vinifera L.) on leaves from different light environments (sun and shade) at different phenological stages during the season to parameterise the Farquhar model. The model parameters for Rubisco activity (Vcmax), maximum electron transport rate (Jmax), and triose-phosphate utilisation (TPU) were estimated on the basis of a large data set (n = 105) of CO2 assimilation (A) versus internal CO2 pressure (Ci) curves. Leaf age was described with the leaf plastochron index (LPI). Stomatal coupling to photosynthesis was modelled with the Ball–Woodrow–Berry empirical model of stomatal conductance. Mature shade leaves had 35–40% lower values of Vcmax, Jmax and TPU than sun leaves. The difference between leaf types decreased at the end of the season. The ratio Jmax / Vcmax and values of day respiration (Rd) and CO2 compensation point in the absence of mitochondrial respiration (Γ*) varied little during the season and were independent of LPI. Validation of the model with independent diurnal data sets of measurements of gas exchange and stomatal conductance at ambient CO2 concentrations for three days between June and October, covering a large range of environmental conditions, showed good agreement between measured and simulated values.


2020 ◽  
pp. 1252-1258
Author(s):  
Hudson Carvalho Bianchini ◽  
Douglas Jose Marques

The effects of drought stress on maize have been extensively reported in tropical and subtropical areas, including morphological changes in plants and reductions in the grain yield. The development of sustainable alternatives that help mitigate the negative impacts of water stress is indispensable for the development of agricultural crops. This study evaluates the effect of silicon fertilization in two irrigation blades, on gas exchange, putrescine content, quantification of Ca, K, Zn, and Fe by neutron activation and grain yield in two maize cultivars, tolerant and sensitive to drought stress. Two experiments were conducted, the first using BR-1010 (sensitive to drought stress) and the second using DKB-390 (tolerant to drought stress), in 19 dm-3 pots with one plant in each pot. The experiment was organized in randomized blocks, in a factorial scheme, combining two irrigation blades (30 percent and 100 percent of necessary water replacement) and two silicon conditions per pots: control (-Si), and 27g Si (+Si) using calcium silicate (10.5 percent Si) with four replicates. The contents of putrescine, Ca, K, Zn, and Fe, as well as transpiration rate, stomatal conductance, and net photosynthetic contents were quantified. Maize yield was measured at the end of the study. It was concluded that supplementation with Si contributes to a 12 percent increase in yield for BR-1010 (drought sensitive) and 14 percent for DKB-390 (drought tolerant). Si increased the net photosynthetic rate, transpiration rate, and stomatal conductance in DKB-390. The content of putrescine increased in plants submitted to drought stress and can be considered as an indicator of drought stress. The leaf contents of Ca, K, Zn, and Fe varied according to the cultivars and water blade studied.


2019 ◽  
Vol 11 (16) ◽  
pp. 233
Author(s):  
Vinicius de Souza Oliveira ◽  
Ana Paula Braido Pinheiro ◽  
Basílio Cerri Neto ◽  
Sara Dousseau Arantes ◽  
Cleidson Alves da Silva ◽  
...  

Under flooding conditions, plants exhibit morphological and physiological characteristics that indicate that the plant is undergoing stress. In this sense, the objective of this work was to evaluate the gas exchange of cocoa (Theobroma cacao L.) seedlings submitted to different times of flooding. The study was carried out at the experimental farm of the Capixaba Institute for Research Technical Assistance and Rural Extension, in Linhares, North of the State of Espírito Santo, Brazil. The experimental design was completely randomized. The treatments consisted in the flooding of the seedlings on days 0 (without flooding), 1, 2, 4 and 8. The seedlings were evaluated for gas exchange by characteristics: liquid assimilation of CO2; stomatal conductance; transpiration rate; water use efficiency. The gas exchange of cocoa seedlings were influenced by the flooding period in which they were submitted with a decrease in the values liquid assimilation of CO2, stomatal conductance and transpiration rate after the fourth day of flooding, after this period the seedlings developed morphological modifications that allowed them to adapt the flooding conditions, improving the liquid assimilation of CO2.


2021 ◽  
Vol 12 (1) ◽  
pp. 032-039
Author(s):  
Gokula Priya Natarajan ◽  
◽  
Malayappa Venkataraman Sriramachandrasekharan ◽  
Rengarjan Manivannan ◽  
Muthu Arjuna Samy Prakash ◽  
...  

A pot experiment was conducted to understand the effect of soil applied silicon on maize crop growth under alkaline stress. The treatment consists of silicon levels (kg ha-1) – 0, 100 and 150 and alkaline stress levels (mM) – 0, 25, 50, 75. The pots were arranged in completely randomized block design in factorial arrangement with three replications. The result revealed that the shoot and root length and chlorophyll content of maize were reduced with increasing alkaline stress. The percent reduction due to alkaline stress on shoot and root length was to tune of 3.6 to 15.8 and 8.9 to 35.8, respectively and chlorophyll content 11.2 to 35.7. The sodium ion content increased, but potassium content and K Na-1 ratio decreased with alkaline stress. The gas exchange parameters viz., photosynthetic rate, stomatal conductance and transpiration rate were significantly decreased with alkalinity levels. The adverse effect of alkalinity on maize was turnround with intervention of soil applied silicon. The percent increase due to silicon intervention ranged from 4.3 to 12.6 in photosynthetic rate, 4.5 to 14.5 in stomatal conductance, 6.3 to 21.4 in transpiration rate, 7.0 to 20.9 and 8.4 to 29.3 in shoot and root potassium, 19.4 to 33.5 and 20.6 to 55.9 in shoot and root K Na-1. The percent decrease in sodium concentration in shoot and root ranged from 8.6 to 14.2 and 4.3 to 23.7. Between 100 and 150 kgs of silicon applied, the desired result was achieved with 150 kg Si ha-1. It is recommended to apply 150 kg Si ha-1 to maneuver the ill effects of alkalinity on maize.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 491B-491
Author(s):  
Wayne F. Whitehead ◽  
Bharat P. Singh

Parwal [Trichosanthus dioica (Roxb.)] is a tropical perennial vine producing small fleshy fruits used as a vegetable. It bears male and female flowers on separate plants. During the summer of 1996, a field study was conducted to determine if male and female plants differed in their gas exchange behavior. Three leaves per plant replicated six times for each sex were tagged randomly at initiation of gas exchange measurements. Transpiration (E), stomatal conductance (gs), CO2 exchange rate (CER), and internal leaf CO2 concentration (Ci) were measured when the leaves were 6, 18, 36, 47, 71, and 81 days old. In general, the gas exchange values for both sexes were similar. The leaves of male plants attained highest E, gs, and CER at 18 days of age. In female plants, CER peaked at an early leaf age of 6 days, while the peaks for E and gs were reached 30 days later. The highest Ci for both sexes were observed in 47-day-old leaves. Eighty-four-day-old leaves were no longer actively exchanging gases.


Sign in / Sign up

Export Citation Format

Share Document