scholarly journals Somatic Embryogenesis of the Cedars of Lebanon (Cedrus libani)

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 461G-462
Author(s):  
S.N. Talhouk ◽  
M. Shmoury ◽  
R. Baalbaki ◽  
S. Khuri

Somatic embryogenesis offers a great potential for large-scale production of Cedrus libani, which is important not only as a forest tree, but also for the development of a timber industry. In an attempt to optimize conditions for embryogenic callus induction, we used zygotic embryos at different developmental stages as explants, compared different media, and used several hormone levels and combinations. Results indicated that post-cotyledonary immature embryos had highest induction efficiency. Four different media namely 1/2 MS, Durzan, Litvay's, and Von Arnold supplemented with similar hormone levels showed no significant difference in efficiency of callus induction. Induction frequencies of embryogenic callus from explants subjected to different hormone levels and combinations were dependent on the developmental stage of the explant.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vasti T. Juárez-González ◽  
Brenda A. López-Ruiz ◽  
Patricia Baldrich ◽  
Eduardo Luján-Soto ◽  
Blake C. Meyers ◽  
...  

Abstract Maize somatic embryogenesis (SE) requires the induction of embryogenic callus and establishment of proliferation before plant regeneration. The molecular mechanisms underlying callus embryogenic potential are not well understood. Here we explored the role of small RNAs (sRNAs) and the accumulation of their target transcripts in maize SE at the dedifferentiation step using VS-535 zygotic embryos collected at distinct developmental stages and displaying contrasting in vitro embryogenic potential and morphology. MicroRNAs (miRNAs), trans-acting siRNAs (tasiRNAs), heterochromatic siRNAs (hc-siRNAs) populations and their RNA targets were analyzed by high-throughput sequencing. Abundances of specific miRNAs, tasiRNAs and targets were validated by qRT-PCR. Unique accumulation patterns were found for immature embryo at 15 Days After Pollination (DAP) and for the callus induction from this explant, as compared to 23 DAP and mature embryos. miR156, miR164, miR166, tasiARFs and the 24 nt hc-siRNAs displayed the most strikingly different patterns between explants and during dedifferentiation. According to their role in auxin responses and developmental cues, we conclude that sRNA-target regulation operating within the 15 DAP immature embryo explant provides key molecular hints as to why this stage is relevant for callus induction with successful proliferation and plant regeneration.


2021 ◽  
Vol 42 (5) ◽  
pp. 1232-1238
Author(s):  
D.S. Sparjanbabu ◽  
◽  
P.N. Kumar ◽  
S.R.K. Motukuri ◽  
D. Ramajayam ◽  
...  

Aim: This study evaluated efficient culture media for the regeneration of elite material through somatic embryogenesis from oil palm zygotic embryos. Methodology: For callus induction, zygotic embryos of four elite genotypes (G1-264T, G2-238DX17P, G3-37DX17P and G4-237T) were cultured on three basal media (Y3, MS and N6) with different auxin 2 mg l-1 (Picloram, 2,4-D and Dicamba) combinations. Subculture was made every month for three passages. It evaluated various callus characters. The embryogenic calli from callus induction media were transferred to the embryo maturation medium and subcultured until the polyembryoids formed. For shoot and root formation, somatic embryo clumps were transferred into regeneration media. In-vitro plantlets with well-grown roots were hardened in pots for six weeks and assessed clonal fidelity using polymorphic SSR primers. Results: Among the treatments, calli from N6+2,4-D, Y3+2,4-D and N6+Picloram showed the highest embryogenic callus potential. G4-237T induced more embryogenic calli (32.982) among genotypes, which was on par with G1-264T (24.196). Embryogenic calli grown on N6 media with Dicamba showed the highest proliferation rate (1.141). After 60 days of culture on regeneration media, the highest number of plantlets per somatic embryogenic clump was obtained from G1-264T on N6 media supplemented with Dicamba. Interpretation: Culture media salt concentration showed a significant difference among media by causing perturbations of auxin flow during somatic embryogenesis affecting callus induction, proliferation and plantlet regeneration. This may be useful for standardizing the genotype-specific regeneration media in oil palm.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Muhammad Ajmal Bashir ◽  
Cristian Silvestri ◽  
Amelia Salimonti ◽  
Eddo Rugini ◽  
Valerio Cristofori ◽  
...  

An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2), salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino, was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and 40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @ 40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at 20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can efficiently contribute to the improvement of the current SE protocols for olive.


2020 ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract • Background • Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. • Results • In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5,333 differentially expressed genes (DEG) with 2,534 upregulated and 2,799 downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. • Conclusions • This comparative analysis of NEC and EC transcriptomes gives new insights into the genetic underpinnings of somatic embryogenesis in cotton.


2018 ◽  
Vol 28 (2) ◽  
pp. 3-12
Author(s):  
N. Phuyal ◽  
P. K. Jha ◽  
P. P. Raturi ◽  
S. Gurung ◽  
S. Rajbhandary

The common method of propagation is through seeds but seed germination in Zanthoxylum armatum is very low due to the presence of hard seed coat, which might be a great hurdle for large scale production of plantlets. So an attempt was made in this study to see the effect of different growth hormones, their concentrations and different rooting media on the rooting and sprouting of Z. armatum. The stem cuttings of Z. armatum were treated with two types of auxins namely Indole-3-Butyric Acid (IBA) and Naphthalene Acetic Acid (NAA) at different concentrations (2000 ppm, 3000 ppm and 5000 ppm), while the untreated cuttings were used as control. The cuttings were planted in three different rooting media: sand, neopeat and mix (containing a mixture of sand, soil and vermin-compost). The completely randomized design was used for the experiment. The total number of stem cuttings of Z. armatum used in the experiment was 1080 for 18 treatments in three replicates (20 cuttings per treatment x 18 treatments x 3 replicates). The experiment was set up in controlled greenhouse conditions at Dabur Nepal Private Limited Nursery, Banepa, Kavre District. The parameters evaluated were root length, shoot length and number of roots per cutting. The collected data were analyzed statistically using R-program with Agricola. Least significant difference (LSD) and Duncan multiple Range Test (DMRT), as mean separation technique was applied to identify the most efficient treatment in the rooting and shooting behavior of Z. armatum (Gomez and Gomez, 1984). Hormone concentration and growth media significantly affected the rooting and shooting ability of Z. armatum stem cuttings. IBA was found to be more effective than NAA. Neopeat medium was better than sand and mix media. The highest number of roots (6.5) and root length (11.6 cm) were recorded under IBA 5000 ppm in neopeat medium.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract Background Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. The critical genetic architecture of non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells in a highly regenerable cotton genotype is unknown. Results In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5333 differentially expressed genes (DEG) with 2534 genes upregulated and 2799 genes downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes were unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. Conclusions This comparative analysis of NEC and EC transcriptomes gives new insights into the genes involved in somatic embryogenesis in cotton.


2020 ◽  
Vol 20 (4) ◽  
pp. 179 ◽  
Author(s):  
NUR AJIJAH

<p>ABSTRAK</p><p><br />Embriogenesis somatik kakao (Theobroma cacao L.) telah banyak<br />dilaporkan  dengan  penggunaan  zat  pengatur  tumbuh  (ZPT)  yang<br />bervariasi. Penggunaan thidiazuron untuk menginduksi embriogenesis<br />somatik kakao telah dilaporkan melalui dua tahap induksi kalus. Penelitian<br />ini bertujuan untuk mengevaluasi efektivitas thidiazuron menginduksi<br />embriogenesis somatik kakao melalui satu tahap induksi kalus. Penelitian<br />dilaksanakan di Laboratorium Kultur Jaringan Unit Pengembangan Benih<br />Unggul, Badan Litbang Pertanian, Bogor. Empat taraf thidiazuron (0; 2,5;<br />5,0; dan 10 µg/l) dikombinasikan dengan 2,4-D 2 mg/l<br />digunakan untuk<br />menginduksi kalus dan embrio somatik 3 klon kakao (TSH858, Sca6, dan<br />ICS13) menggunakan eksplan mahkota bunga dan staminoid. Media dasar<br />DKW tanpa ZPT digunakan sebagai kontrol. Penelitian disusun dalam<br />rancangan lingkungan acak lengkap dengan lima ulangan. Setiap unit<br />percobaan terdiri dari sepuluh eksplan. Peubah yang diamati meliputi<br />persentase pembentukan kalus umur 2 dan 4 minggu, penampakan visual<br />kalus, persentase eksplan membentuk embrio somatik, dan jumlah embrio<br />somatik per eksplan umur 10 dan 14 minggu. Kalus terbentuk pada media<br />dengan penambahan hanya 2,4-D atau 2,4-D + thidiazuron, namun embrio<br />somatik hanya terbentuk pada media dengan penambahan 2,4-D +<br />thidiazuron. Pembentukan kalus dan embrio somatik sangat dipengaruhi<br />oleh tipe eksplan dan genotipe. Klon Sca6 lebih responsif dibandingkan<br />TSH858 dan ICS13 dan eksplan staminoid lebih responsif dibandingkan<br />mahkota bunga. Hasil studi ini menunjukkan terdapat pengaruh interaksi<br />yang kuat antara ZPT, genotipe, dan tipe eksplan terhadap pembentukan<br />kalus dan embrio somatik kakao serta tidak terdapat perbedaan hasil yang<br />nyata antara pembentukan embrio somatik melalui satu dan dua tahap<br />induksi kalus.<br />Kata kunci: Theobroma cacao L., genotipe, eksplan, zat pengatur tumbuh</p><p>ABSTRACT</p><p><br />Somatic embryogenesis of cacao (Theobroma cacao L.) has been<br />widely reported with varied of plant growth regulators (PGR) used. The<br />use of thidiazuron in inducing somatic embryogenesis of cacao has been<br />reported through a two-step callus induction. The study aimed to evaluate<br />the effectiveness of thidiazuron in inducing somatic embryogenesis of<br />cacao through a one-step of callus induction. The study was conducted at<br />the tissue culture laboratory of Agricultural Seed Development Unit,<br />Indonesian Agency for Agricultural Research and Development, Bogor.<br />Four levels of thidiazuron (0; 2.5; 5.0; and 10 µg/l) in combination with 2<br />mg/l  2,4-D  were  used  for  inducing  callogenesis  and  somatic<br />embryogenesis of three cacao clones (TSH858, Sca6, and ICS13) using<br />petals and staminoids explants. DKW basal medium without PGR was<br />used as a control. The result showed that callus were formed on medium<br />containing only 2,4-D or 2,4-D + thidiazuron, while embryos were only<br />formed on medium containing 2,4-D + thidiazuron. The formation of<br />callus and somatic embryos were highly affected by explant types and<br />genotypes. Sca6 clone was more responsive than TSH858 and ICS13 and<br />staminoids were more responsive than petals. The results of this study<br />revealed that there was a strong interaction between the PGRs, genotypes,<br />and explant types on the formation of cacao callus and somatic embryos.<br />Results of this study also showed no significant difference between the<br />formation of somatic embryos through one and two steps of callus<br />induction.<br />Keywords: Theobroma cacao L., genotypes, explants, plant growth<br />regulators</p>


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 788E-789
Author(s):  
Hae Young Na* ◽  
Dong Jin Shin ◽  
Changhoo Chun

Pimpinella brachicarpa (Chamnamul in Korean) is an indigenous plant that grows in Korean mountain areas. It has not been cultivated yet but is gathered to use as a vegetable. Its difficulty of propagation by seeds is one of the major reasons not to be cultivated as a horticultural crop despite its demand. As a promising propagation method for the Chamnamul, we have developed a micropropagation system using somatic embryogenesis. In the present study, induction of embryogenic callus of the Chamnamul affected by part of explants (leaf and stem) and concentration (0, 0.1, 0.5, 1.0, 1.5, and 2.0 mg·L-1) of growth regulators (2.4-D, IAA, IBA, and NAA) was investigated to find the best conditions for embryogenic callus induction. A full strength of MS medium was used for a 50-day culture for all the treatments. The embryogenic callus was firm and light yellow in color and was distinct from the non-embryogenic callus that was friable and semitransparent. More embryogenic callus was induced in the treatments that the stem was used as an explant comparing with the treatments that the leaf was used. The 2.4-D treatments resulted in the better induction of embryogenic callus than other growth regulator treatments, and 1.5 mg·L-1 was the most effective among all the 2,4-D concentration treatments. Addition of 0.1 mg·L-1 BA to 2.4-D treatments retarded the induction of embryogenic callus of the Chamnamul, while the promotion of induction and multiplication of embryogenic callus was reported in many plant species by adding BA with low concentration to an auxin-base medium. The better induction was found in the treatments of darkness and dim lighting (10 μmol·m-2·s-1 of PPF) than in treatments of the higher PPF.


Author(s):  
Sulistyani Pancaningtyas

Cocoa (Theobroma cacao L.) development using modern breeding techniques can be facilitated by propagation of planting material through somatic embryogenesis. Various factors that may affect embryogenesis are the composition of culture medium and culture condition. Hormone commonly used to initiate the formation of callus is auxin with type 2.4-D (2.4 Dichlorophenoxy acetic acid). The aim of this study was to determine the effect of the addition of 2.4 -D hormoneson the process of cocoa embryogenesis. The treatments were arragged in factorial combination in completely randomized design, which consisted of two factors. Thefirst factor was the concentration of auxin 2,4-D 25 %, 50 %, 75 %, and 100 %; and the second factor was cocoa clones; Sulawesi 01 and Sulawesi 02. The resultshowed that the addition of 2.4-D hormone up to 100% on somatic embryogenesis of cocoa for Sulawesi 01 clone was not significantly different from Sulawesi 02 clone for all parameters. While on the addition of 2.4-D, there was significant difference between Sulawesi 01 and 02. Cocoa embryogenic callus using the addition of 2.4-D (25%-100%) was significantly different from control. Increased concentrations of 2,4-D hormone which is applied onto media would inhibit the formation of the somatic embryo. Addition of 2.4 D 25%, encouraged towards non-embryogenic callus. Keywords: 2.4 Dichlorophenoxy acetic acid, embryogenic callus, somatic embryos, cocoa, medium culture, hormone


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
A. Bakrudeen Ali Ahmed ◽  
A. S. Rao ◽  
M. V. Rao ◽  
Rosna Mat Taha

Gymnema sylvestre(R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures ofG. sylvestre. The factors optimized forin vitroproduction of GA during the present study can successfully be employed for their large-scale production in bioreactors.


Sign in / Sign up

Export Citation Format

Share Document