scholarly journals The Effect of Mulch Type and Fertilizer Placement on Marigold (Tagetes erecta `Hybrid Gold') Growth in Landscape Plantings

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 604C-604
Author(s):  
R.M. Mirabello ◽  
A.E. Einert ◽  
G.L. Klingaman

The objective of this study was to examine the influence of mulch material and fertilizer application method on nutrient availability in a landscape situation. Beds containing four mulch materials (pine bark, cypress pulp, pine straw, and cottonseed hulls) and three fertilizer application methods (granule, liquid, and time release) were established. Fertilizer placement included application either above or below the mulch horizon. Beds with and without mulch cover and no fertilization were established as controls. Marigolds, Tagetes erecta `Hybrid Gold', were planted within the beds. Plants in unmulched or fertilized control beds had greater dry weights than plants in beds with mulch alone. Only plants grown in the cottonseed hull control demonstrated a slight improvement and cottonseed hulls demonstrated the best plant performance overall. The greater nitrogen content of cottonseed hulls may influence less immobilization of nitrogen in the soil solution during decomposition and reduce competition for nutrients between microorganisms and plants. Fertilization improved plant growth in all treatments except pine bark. Beds using pine bark showed significant reduction in plant dry matter accumulation. Potential toxicity or changes in soil chemistry by pine bark may have influenced these results and will be examined in further experiments. Fertilizer placement had no effect on plant growth.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 444D-444
Author(s):  
R.A. Mirabello ◽  
A.E. Einert ◽  
G.L. Klingaman

The effects of a mulch material on nutrient availability remain questionable. As organic materials decompose, the increased activity of microorganisms immobilizes nutrients (particularly nitrogen) to preform this process. The decomposition of mulch material and the activity of microorganisms may then compete for nutrients applied to ornamental species in the landscape. To examine this question, four widely available mulch materials (pine bark, cypress pulp, pine straw, and cottonseed hulls) and three fertilizer application methods (granule, liquid, and time release), which were applied either above or below the mulch, were established. Beds with and without mulch cover and no fertilization were established as controls. Marigolds, Tagetes erecta `Hybrid Gold', were planted within the beds. Growth response was found to be greatest in beds with cottonseed hulls. Cottonseed hulls are reported to have a high nitrogen content of their own that may influence less immobilization of nitrogen for decomposition. Beds using pinebark showed significant reduction in plant growth. Fertilization application method also demonstrated significant differences in plant response. The use of a granule fertilizer produced the greatest growth response although initial plant loss was observed in beds using this method. The fast release nature of granule fertilizer and potential toxicity were the suspected reason for this observation. Growth data indicated plant performance was unaffected by fertilizer placement.


2021 ◽  
Vol 13 (24) ◽  
pp. 13842
Author(s):  
Qurat-ul-Ain ◽  
Aisha Nazir ◽  
Sergio C. Capareda ◽  
Muhammad Shafiq ◽  
Firdaus-e-Bareen

Cotton gin trash, the by-product of the cotton ginning industry which is produced in large quantities every year, can be utilized as feedstock for deriving high quality organic materials such as biochar, compost and co-composted derivates for improvement of soils’ key physical, chemical and biological properties. This is the first report in which cotton gin trash was both thermally and biologically converted at the same time into biochar (BC), compost (C) and co-compost (Coc), and their effects on soil properties and on plant performance were examined. In order to find the optimum rate, the products were used as soil amendments in a greenhouse experiment at 2.5 t ha−1, 5 t ha−1and 10 t ha−1 rates. All of the amendments contributed in improving the soil properties and provided agronomic benefits to plants, however plants (radish var. Cherry belle) showed significantly (p < 0.05) better growth attributes and almost a 315% increase in biomass yield observed when co-composted biochar (10 t ha−1) was applied to the soil, thus suggesting its role in compensating fertilizer application. Amendments (2.5 and 5.0 t ha−1) considerably increased plant growth parameters; however, differences between 5 and 10 t ha−1 amendments were not so significant. As a result, replenishing soil with Coc (5 t ha−1) on a regular basis can promote plant growth and improve soil qualities over time.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 602e-602
Author(s):  
Patricia R. Knight ◽  
John M. Anderson ◽  
Ralph A. Parks

The influence of media on plant growth was investigated for five annual species. Uniform 164-cm3 liners of Tagetes erecta `Discovery Orange', Impatiens wallerana `Accent Orange', Melampodium paludosum `Showstar', Scaevola aemula `New Wonder', and Petunia axillaris `Surfinia White' were planted into 2.8-L containers on 4 Apr. 1997. The experiment was terminated after 90 days. Media included Metro-Mix 366 peat or coir, Metro-mix 700 peat or coir, and 4 pine bark : 1 sand (by volume, amended with 1.2 kg.m-3 dolomitic limestone). Plants were top-dressed with 9 g Osmocote Plus 15-9-11. Substituting coconut coir for peat moss in commercial media reduced Petunia 90 DAT foliar color ratings, Impatiens shoot dry masses, and Melampodium and Scaevola root ratings. Utilization of pine bark did not influence foliar color ratings of Tagetes, Melampodium, Petunia, or Scaevola 90 DAT. Utilization of pine bark reduced shoot dry masses of Impatiens, Melampodium, and Scaevola, and root ratings of Melampodium and Tagetes.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 485a-485
Author(s):  
Joseph Eakes ◽  
John W. Olive

Five 12- to 14- month slow release fertilizers (Osmocote 17-7-12, Sierra 16-6-10, High-N 24-4-7, Sierrablend 17-7-10, and Nutricote 16-10-10 Type 360) were incorporated into a 3:1 pine bark: peat moss potting medium at one of 4 rates (0.9, 1.2, 1.5, and 1.8 kg N/m3). Plant growth of 3 azale a species, `Coral Bells' (Kurume), `Formosa' (Southern Indica), and `Pink Gumpo' (Satsuki), and monthly medium solution electrical conductivity (EC) were determined. Growth indices 180 days after applying fertilizer were greatest for plants receiving the Sierrablend and Osmocote fertilizers regardless of azalea species. Plant growth indices increased as N rate increased for the 3 azaleas, regardless of the fertilizer product. The highest media solution EC readings occurred during the first 90 days after fertilizer application for all fertilizer treatments and declined thereafter.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 448e-449
Author(s):  
R.A. Mirabello ◽  
A.E. Einert ◽  
G.L. Klingaman ◽  
R.W. McNew

A winter planting of pansies, Viola × wittrockiana Gams, was established in existing landscape beds to determine mulch type and fertilizer application method influences on plant growth. Two cultivars, `Bingo Blue' and `Bingo Purple', were planted in beds containing four different mulches (cottonseed hulls, cypress wood, pine bark, pine straw). A split application of fertilizer by three application methods (granular, liquid, time-release) was applied at planting for plant establishment and in the spring to encourage new growth. Fertilizer was applied either below the mulch on the soil surface or over the mulch surface. Cottonseed hulls, cypress wood, and pine bark delayed soil warming in the spring and the effectiveness of all fertilizers. The use of time-release fertilizer below all mulches improved growth. Pine straw allowed soil temperatures to rise and fertilizer to increase plant dry weight accumulation. Rapid decomposition of pine straw resulted in a 0.55-unit decrease in soil pH and increases in soil nitrogen and EC values.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 603c-603
Author(s):  
R.A. Mirabello ◽  
A.E. Einert ◽  
G.L. Klingaman ◽  
R.W. McNew

To examine the effects of mulching and fertilization on nutrient availability and plant growth in landscape beds, plots were established using four mulches (cottonseed hulls, cypress wood, pine bark, pine straw) and three fertilizer application methods (granular, liquid, time-release). Fertilizer was applied either below the mulch on the soil surface or over the mulch surface. Marigolds, Tagetes erecta L., were planted during the summer, followed by pansies, Viola×wittrockiana Gams, during the winter. Applied fertilizers, existing soil nutrients, and water-soluble nutrients from the new mulch provided an adequate supply of nutrients for marigold growth. Placement of fertilizer above or below the mulch did not affect marigold growth. Pansy growth was limited by depletion of soil N during the marigold season and by leaching of applied nutrients in the winter while plants were not actively growing. Mulch lowered soil temperatures and slowed pansy recovery in the spring. Pine straw allowed soil temperatures to rise earlier in the spring and improved pansy growth.


2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2013 ◽  
Vol 39 (1) ◽  
pp. 126
Author(s):  
Qiao-Yi HUANG ◽  
Shuan-Hu TANG ◽  
Jian-Sheng CHEN ◽  
Fa-Bao ZHANG ◽  
Kai-Zhi XIE ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1543
Author(s):  
Piotr Szulc ◽  
Jan Bocianowski ◽  
Kamila Nowosad ◽  
Henryk Bujak ◽  
Waldemar Zielewicz ◽  
...  

Field experiments were carried out at the Department of Agronomy of the Poznań University of Life Sciences to determine the effect of the depth of NP fertilization placement in maize cultivation on the number of plants after emergence. The adopted assumptions were verified based on a six-year field experiment involving four depths of NP fertilizer application (A1—0 cm (broadcast), A2—5 cm (in rows), A3—10 cm (in rows), A4—15 cm (in rows)). The objective of this study was to assess NP fertilizer placement depth, in conjunction with the year, on the number of maize (Zea mays L.) plants after emergence using the additive main effects and multiplicative interaction model. The number of plants after emergence decreased with the depth of NP fertilization in the soil profile, confirming the high dependence of maize on phosphorus and nitrogen availability, as well as greater subsoil loosening during placement. The number of plants after emergence for the experimental NP fertilizer placement depths varied from 7.237 to 8.201 plant m−2 during six years, with an average of 7.687 plant m−2. The 61.51% of variation in the total number of plants after emergence was explained by years differences, 23.21% by differences between NP fertilizer placement depths and 4.68% by NP fertilizer placement depths by years interaction. NP fertilizer placement depth 10 cm (A3) was the most stable (ASV = 1.361) in terms of the number of plants after emergence among the studied NP fertilizer placement depths. Assuming that the maize kernels are placed in the soil at a depth of approx. 5 cm, the fertilizer during starter fertilization should be placed 5 cm to the side and below the kernel. Deeper NP fertilizer application in maize cultivation is not recommended. The condition for the use of agriculture progress, represented by localized fertilization, is the simultaneous recognition of the aspects of yielding physiology of new maize varieties and the assessment of their reaction to deeper seed placement during sowing.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sai Guo ◽  
Wu Xiong ◽  
Xinnan Hang ◽  
Zhilei Gao ◽  
Zixuan Jiao ◽  
...  

Abstract Background Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers.


Sign in / Sign up

Export Citation Format

Share Document