scholarly journals 060 Differential Responses of Egyptian Faba Bean Genotypes to in Vitro Callus Induction

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 398E-398
Author(s):  
F. Nekouei ◽  
J.O. Kuti

Callus induction in 12 genotypes of faba bean (Vicia faba L.) genotypes from Egypt were examined. Cotyledon, leaf petiole, and stem explants were cultured on two basal agar media; Murashige and Skoog (MS) and Gamborg (B5). The media contained 0.5 mm 2,4-D, 0.25 mm NAA, and 30 g of sucrose/L. Calli were easily formed in B5 media and induction rate was significantly dependent on the genotype. The highest induction rates occurred mostly in genotypes from Assiut Univ., Egypt, and in a local variety `Goya'. These callus cultures will be used for in vitro screening of the faba bean genotypes for tolerance to salt and drought, respectively.

2018 ◽  
Vol 22 ◽  
pp. 274-281
Author(s):  
N. B. Kravets ◽  
N. V. Tulaidan ◽  
M. Z. Mosula ◽  
N. M. Drobyk

Aim. The aim of the research was to choose the conditions for microclonal propagation and obtain callus cultures from Carlina аcaulis L., Carlina cirsioides Klok and Carlina onopordifolia Besser ex Szafer, Kulcz. et Pawl plants in vitro. Methods. For microclonal propagation of С. acaulis, C. cirsioides and C. onopordіfolia we used rosettes of 2–3-month specimens and planted them on semi-solid Murashige and Skoog (MS) medium with decreased macro- and microsalts concentrations (MS/2) supplemented with kinetin (Кin) (from 1–3 mg/l) and 0.1 mg/l of 1-naphthaleneacetic acid (NAA). For induction of callus formation, we used root, stem explants from С. acaulis, C. cirsioides and C. onopordіfolia, and planted them on nutrient media MS, MS/2, and Gamborg and Eveleigh (В5) supplemented with different concentrations of cytokinins – 6-benzylaminopurine (BAP) or Кin and auxins – 2.4-dichlorophenoxyacetic acid (2.4-D) or NAA and indole-3-acetic acid (IAA). Results. MS/2 medium supplemented with growth regulators of NAA and Кin were the most efficient to provide the formation of microclones. For C. сirsioides plants, this indicator was 6.6–6.8 rosettes per graft after 6 months of cultivation and for С. acaulis and C. onopordіfolia – 4.2–5.0 and 4.8–5.2 respectively. To raise the percentage of rooting for microclones of Carlina species, it was expedient to steep them preliminarily in the solution of indole-3-butyric acid (IBA) with 1000 mg/l concentration for a minute. Optimal for obtaining callus tissue from Carlina plants was nutrient medium MS supplemented with 3 mg/l IAA, 0.5 mg/l NAA and 0.5 mg/l Kin and MS/2 with 0.1 mg/l BAP and 0.5 mg/l 2.4-D; under such conditions the percentage of callus induction exceeded 90 % for all types of explants. Conclusions. There were chosen the conditions for microclonal propagation of С. acaulis, C. cirsioides and C. onopordіfolia and worked out the schemes for enrooting obtained microclones in vitro. Capable of growing rapidly callus cultures from root and stem explants of the investigated plant species were obtained. Keywords: Carlina аcaulis L., Carlina cirsioides  Klok, Carlina onopordifolia Besser ex Szafer, Kulcz. et Pawl, in vitro, microclonal propagation, callus induction.


1970 ◽  
Vol 35 (2) ◽  
pp. 331-341 ◽  
Author(s):  
MA Sayem ◽  
M Maniruzzaman ◽  
SS Siddique ◽  
M Al-Amin

The experiment was conducted to investigate the performance of three different genotypes (BARI Sarisha-6, BARI Sarisha-8, and BARI Sarisha-11) in two different media viz., MS and B5 with different concentrations of phytohormone (2, 4-D) for callus induction from uninucleate stage anthers of Brassica and subsequent plant regeneration in MS media with different concentrations of phytohormone (BAP and NAA). Among the genotypes, BARI Sarisha-8 showed the best performance for all the parameters of callus induction. The performance of BARI Sarisha-6 was poor compared to others. Maximum rate of callus induction (%) was observed in MS + 0.5 mg/L 2, 4-D followed by B5 + 0.5 mg/L 2,4-D. The media combination MS + 1.0 mg/L BAP 0.3 mg/L 2,4-D showed the best performance for maintenance of calli. Significant variations were observed among the genotypes and media composition for shoot regeneration. Among the genotypes, BARI Sarisha-8 showed the best performance for shoot regeneration followed by BARJ Sarisha-l1. The genotype BARI Sarisha-8 produced higher percent of shoots/calli and required minimum days for shoot initiation. Higher percent calli without shoot were produced by the genotype BARI Sarisha-6. The media combination MS + 2.0 mg/L BAP + 0.5 mg/L NAA showed the best performance for shoot regeneration and required maximum days for shoot initiation. Keywords: Regeneration; BARI Sarisha-6; BARI Sarisha-8; BARI Sarisha-11; anther culture; phytohormone  DOI: 10.3329/bjar.v35i2.5896Bangladesh J. Agril. Res. 35(2) : 331-341, June 2010


1970 ◽  
Vol 8 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M Hoque ◽  
KM Nasiruddin ◽  
GKMN Haque ◽  
GC Biswas

The experiment was conducted during May to December 2008 in the Biotechnology Laboratory of Bangladesh Agricultural University, Mymensingh to observe the callus induction, regeneration potentiality and to establish a suitable in vitro plantlet regeneration protocol of Corchorus olitorius. MS medium supplemented with different phytohormone concentrations and combinations were used to observe the callus induction, shoot regeneration and root formation ability of the cotyledon with attached petiole derived explant of three genotypes viz. O-9897, O-72 and OM-1. The highest callus induction (92.85%) was observed in O-9897 followed by O-72 (82.14%) in the MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA. Genotype O-9897 in MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA produced the highest percentage of shoot regenerants (83.33%) followed by O-72 (75.00%) in the media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA. The root formation from regenerants was the best on halfstrength of MS media supplemented with 0.6 mg/L IBA in genotype O-9897 (45.00%). The in vitro regenerated plantlets from the genotypes O-9897 could be established in the field. Therefore, the genotypes O-9897 of C. olitorius in MS media supplemented with 2.5 mg/L BAP + 0.5 mg/L IAA could be used for callus induction and shoot regeneration. Keywords: Regeneration; Phytohormone; Corchorus olitorius DOI: 10.3329/jbau.v8i1.6390J. Bangladesh Agril. Univ. 8(1): 1-6, 2010


1970 ◽  
Vol 19 (2) ◽  
pp. 185-197
Author(s):  
T.L. Aditya

An efficient protocol was developed for in vitro morphogenic ability along with plantlet regeneration of two Bangladeshi indica rice varieties (BR24 and BR26) via somatic embryogenesis by applying 50 mM NaCl stress in callus induction and suspension initiation media. Osmotic stress was induced by NaCl (50, 100, 150, 200 and 250 mM) on the cell growth in suspension maintenance media. In viability test stress adapted cells showed 85 - 95% viability up to 200 mM NaCl compared with stress shocked (MS1-50) and control (MS1-0) treatments. Higher stress adapted cells showed growth retardation and the induction of plasmolysis. For both genotypes somatic embryos were obtained in both MS based liquid and semisolid media with or without 50 and 100 mM NaCl. Cell suspension-derived micro-calli were partially desiccated (6 - 12 hr) and subsequently maintained in MS1 callus induction media supplemented with proline (12 mM), ABA (2 mg/l) and 0.6% phytagel in the presence or absence of 50 and 100 mM NaCl. Subsequently, desiccated somatic embryos were transferred in MS based regeneration media with or without 50 and 100 mM NaCl. Proline mediated callus was found to be more effective in embryo differentiation than ABA. Partial desiccation dramatically enhanced callus growth and partially increased regeneration percentage. BR24 showed a better regeneration response producing plantlets in presence of proline in control media while BR26 restored regeneration potential in the presence of ABA and 100 mM NaCl. Plantlets regenerated from salt stressed callus cultures were then grown in compost in a glasshouse and produced normal, fertile plants.  Key words: Indica rice, Cell suspension, Morphogenic, Regeneration D.O.I. 10.3329/ptcb.v19i2.5436 Plant Tissue Cult. & Biotech. 19(2): 185-197, 2009 (December)


Author(s):  
Deep Chhavi Anand ◽  
Rishikesh Meena ◽  
Vidya Patni

Objective: The aim of the present study was to develop a callus induction protocol and comparative study of therapeutic phytochemicals present in in vivo leaf and in vitro callus extracts through Gas Chromatography-Mass Spectrometry analysis.Methods: Murashige and Skoog media was used as culture media for callus induction. In vitro callus induction protocol was developed by studying the effects of various plant growth regulators like auxin, 2, 4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalic acetic acid), alone and in combination with cytokinin BAP (benzyl aminopurine), on leaf and stem explants. The GC-MS analysis of Ampelocissus latifolia was carried out on Shimadzu QP-2010 plus with thermal desorption system TD 20 to study the phytochemical profile.Results: In vitro callus induction protocol was developed for the plant and callusing was done from leaf and stem explants of Ampelocissus latifolia. The best result for callus induction was obtained using leaf explant, and callus production were maximum in Murashige and Skoog medium fortified with BAP (0.5 mg/l) and NAA (1.0 mg/l). Major compounds identified in the GC-MS analysis were Campesterol, Stigmasterol, Beta-Sitosterol, Docosanol, Dodecanoic acid, etc., in in vitro extract and Beta Sitosterol, Tocopherol, Squalene, Bergamot oil, Margarinic acid, Hexadecanoic acid, etc., in in vivo extract. The different active phytochemicals identified have been found to possess a wide range of biological activities, thus this analysis forms a basis for the biological characterization and importance of the compounds identified for human benefits.Conclusion: This is the first report on callus induction in Ampelocissus latifolia. From the results obtained through the in vitro callus induction and its comparative GCMS analysis with in vivo extract, it is revealed that Ampelocissus latifolia contains various bioactive compounds that are of importance for phytopharmaceutical uses. The GCMS analysis revealed that the amount of Beta-sitosterol and 5-Hydroxymethylfurfural (HMF) was very high in in vitro extract as compared to in vivo extract.


1986 ◽  
Vol 22 (3) ◽  
pp. 225-233 ◽  
Author(s):  
M.M. Youssef ◽  
M.A. Hamza ◽  
M.H. Abd El-Aal ◽  
Laila A. Shekib ◽  
A.A. El-Banna

Author(s):  
Padmavathi A.V. Thangella ◽  
B. Fakrudin

An efficient in vitro protocol was developed for callus induction, high frequency plant regeneration through callus cultures derived from cotyledonary leaf and epicotyl explants, rooting of shoots derived from callus and establishment onto the natural conditions in two cultivars of pigeon pea; ICPL 87119 and ICPL 8863. Cotyledonary leaf and epicotyl explants were tested for callus induction across 48 different combinations and concentrations of auxins and cytokinins in MS medium, wherein, higher doses of auxins (15 mg/1 NAA) in combination with lower doses of cytokinins (0.5 mg/l kinetin) induced regenerable callus from leaf explants while lower doses of auxins (0.2 mg/1 NAA) in combination with higher doses of cytokinins (8 mg/1 kinetin) induced regenerable callus from epicotyl explants in both the genotypes. Plantlet regeneration from leaf and epicotyl derived callus was optimized at 0.05 mg/l TDZ in both genotypes. Rooting was optimized on ½ MS + 0.5 mg/1 IBA media in both genotypes. Well-rooted plants were acclimatized and established successfully into natural conditions in potting mixture-containing soil: FYM in 1:1 ratio resulting in 48.01 per cent survivability. Regenerated plants were uniform morphologically with normal leaf shape and growth. This protocol finds its significance in rapid multiplication of transgenic plants.


HortScience ◽  
1992 ◽  
Vol 27 (2) ◽  
pp. 166-168 ◽  
Author(s):  
Andrew C. Ludwig ◽  
John F. Hubstenberger ◽  
Gregory C. Phillips ◽  
G. Morris Southward

Callus cultures were established from intraspecific lines of Allium cepa L., interspecific F1 progeny of A. cepa crossed to A. fistulosum L. and to A. galanthum L., advanced generations of A. fistulosum x A. cepa backcrossed to A. cepa, and lines of A. fistulosum and A. galanthum. These genotypes had been identified as susceptible, resistant, or partially resistant tester lines based on prior seedling and field nursery screenings using the pink-root pathogen Pyrenochaeta terrestris (Hansen) Gorenz, Walker and Larson. Tester line calli were challenged in vitro with culture filtrates of the fungal pathogen and were assessed by visible damage ratings expressed as the percentage of pigmentation in response to the filtrate. The degrees of callus sensitivity to the filtrate observed in vitro corresponded well with the in vivo tester line classifications. These results eliminated the possible confounding influence of using various species of Allium for in vitro screening. Our results indicated the suitability of the in vitro screening approach for the possible identification of useful segregants or somaclonal variants possessing pink-root resistance. However, in vivo pathogenicity may involve mechanisms in addition to sensitivity to the putative toxins present in the filtrate.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 460D-460
Author(s):  
Chamchuree Sotthikul ◽  
Pimchai Apavatjrut

Curcuma roscoeana Wall. is a tuberous perennial plant with tuberous rhizomes. It is an endangered species. In nature, it has a very low rate of multiplication. Propagation of C. roscoeana in vitro was done by culturing 0.5 × 1.0-mm shoot tips from young buds onto modified Murashige and Skoog (MS)+ 0.25 mg/L kinetin. Stem explants 10.0 mm in size, measured from the base of the plantlets longitudinally cut in half, were used in the experiments. The first experiment was done by varying the concentration of both kinetin and NAA, in MS liquid medium, at 0–8.0 mg/L and 0–0.05 mg/L, respectively. There were no significant differences of kinetin and NAA concentrations on the number of plantlets obtained. The 0.5-mg/L kinetin treatment gave the highest yield in number of new plantlets (3.1 plantlets/cultured explant). In the second experiment, various concentrations of BAP from 0 to 8.0 mg/l were tested. 2.8–3.7 plantlets were formed in the media with 0.05–2.0 mg/L of BAP. The most-suitable concentration of BAP was at 1.0 mg/L, providing 3.7 plantlets/cultured explants. Kinetin or BAP alone could be used in MS medium for rapid clonal propagation of C. roscoeana. The rooted plantlets could be successfully transferred into growing pots. Acknowledgement: The studies were supported in part by The King's Initiative Centre for Fruit and Flower propagation and Development, Ban Rai, Chiang Mai.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
A. Bakrudeen Ali Ahmed ◽  
A. S. Rao ◽  
M. V. Rao ◽  
Rosna Mat Taha

Gymnema sylvestre(R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures ofG. sylvestre. The factors optimized forin vitroproduction of GA during the present study can successfully be employed for their large-scale production in bioreactors.


Sign in / Sign up

Export Citation Format

Share Document