scholarly journals IN VITRO CALLUS INDUCTION AND COMPARATIVE GC-MS ANALYSIS OF METHANOLIC EXTRACTS OF CALLUS AND LEAF SAMPLES OF AMPELOCISSUS LATIFOLIA (ROXB.) PLANCH

Author(s):  
Deep Chhavi Anand ◽  
Rishikesh Meena ◽  
Vidya Patni

Objective: The aim of the present study was to develop a callus induction protocol and comparative study of therapeutic phytochemicals present in in vivo leaf and in vitro callus extracts through Gas Chromatography-Mass Spectrometry analysis.Methods: Murashige and Skoog media was used as culture media for callus induction. In vitro callus induction protocol was developed by studying the effects of various plant growth regulators like auxin, 2, 4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalic acetic acid), alone and in combination with cytokinin BAP (benzyl aminopurine), on leaf and stem explants. The GC-MS analysis of Ampelocissus latifolia was carried out on Shimadzu QP-2010 plus with thermal desorption system TD 20 to study the phytochemical profile.Results: In vitro callus induction protocol was developed for the plant and callusing was done from leaf and stem explants of Ampelocissus latifolia. The best result for callus induction was obtained using leaf explant, and callus production were maximum in Murashige and Skoog medium fortified with BAP (0.5 mg/l) and NAA (1.0 mg/l). Major compounds identified in the GC-MS analysis were Campesterol, Stigmasterol, Beta-Sitosterol, Docosanol, Dodecanoic acid, etc., in in vitro extract and Beta Sitosterol, Tocopherol, Squalene, Bergamot oil, Margarinic acid, Hexadecanoic acid, etc., in in vivo extract. The different active phytochemicals identified have been found to possess a wide range of biological activities, thus this analysis forms a basis for the biological characterization and importance of the compounds identified for human benefits.Conclusion: This is the first report on callus induction in Ampelocissus latifolia. From the results obtained through the in vitro callus induction and its comparative GCMS analysis with in vivo extract, it is revealed that Ampelocissus latifolia contains various bioactive compounds that are of importance for phytopharmaceutical uses. The GCMS analysis revealed that the amount of Beta-sitosterol and 5-Hydroxymethylfurfural (HMF) was very high in in vitro extract as compared to in vivo extract.

Author(s):  
Karthikeyan A. V. P. ◽  
Sudan I.

Objective: Investigation of the bioactive compounds from the ethanol shoot extracts of in vivo and in vitro plants of Cleome gynandra (C. gynandra) through GC-MS analysis. Methods: The nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyl-aminopurine (BAP), kinetin-6-furfurylaminopurine (Kin) and indole 3 acetic acids (IAA) for shoot induction. In the present study, the phytochemical constituents were analyzed from the ethanol extract of in vivo and in vitro plants of C. gynandra using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The mass spectrum of the ethanol extract was compared with the available library sources.Results: In the present study, different concentrations of cytokinins and in the combination of IAA are used to develop regenerated shoots. The maximum number of shoots was obtained 9.2±0.41 with the length of 6.6 cm and highest frequency of (100%) shoot induction was observed on MS medium containing 10 μM BAP with 4 μM IAA. The GC-MS analysis revealed that the shoots of in vivo and in vitro plants contained 21phytochemicals, of these 3 components were similar in both in vivo and in vitro plants, 2 phytochemical's are repeated with different RT, 7 components are having biological activity and in the remaining 9 components, biological activities are not reported.Conclusion: The present study, the in vitro regeneration, combinations of hormones (10 μM BAP plus 4 μM IAA) tested showed the best result than individual and also revealed that the synthesis of more number of phytochemicals present in the ethanolic extracts of in vitro plants than the in vivo plants of C. gynandra.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


2011 ◽  
Vol 345 ◽  
pp. 349-354 ◽  
Author(s):  
Jia Lei Li ◽  
Yuan Gang Zu ◽  
Xiu Hua Zhao ◽  
Dong Mei Zhao ◽  
Xiao Qiang Chen ◽  
...  

Resveratrol (RES) is a naturally occurring triphenolic phytoalexin compound exerting numerous beneficial effects in the organism. It has a wide range of biological activities in vitro as well as in vivo, such as anti-cancer, antioxidant, anti-inflammatory and beneficial cardiovascular effects. But, its low solubility in water led to its poor absorption in vivo and low bioavailability. Bovine serum album (BSA) nanoparticles have emerged as versatile desired carrier systems due to its ready availability, biodegradability, lack of toxicity and immunogenicity with fast development of nano technology. In this study, RES-BSANPS were prepared by a desolvation method and chemical cross-linking with glutaraldehyde successfully. Results controlled conditions (concentration of BSA, 10 mg/ml; pH = 9.0; volume of ethanol, 6 ml; volume of 0.25 % glutaraldehyde, 100 µl; amount of RES, 6.7 mg; cross-linking time, 24 h at room temperature (1 ml/min)) for entrapment efficiency, loading efficiency, mean particle size and zeta potential, were found to be 88.7 %, 39.4 %, 175.4 ± 0.5 nm, -35.93 ± 0.79 mV, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rossella Russo ◽  
Maria Tiziana Corasaniti ◽  
Giacinto Bagetta ◽  
Luigi Antonio Morrone

Essential oils are complex mixtures of several components endowed with a wide range of biological activities, including antiseptic, anti-inflammatory, spasmolytic, sedative, analgesic, and anesthetic properties. A growing body of scientific reports has recently focused on the potential of essential oils as anticancer treatment in the attempt to overcome the development of multidrug resistance and important side effects associated with the antitumor drugs currently used. In this review we discuss the literature on the effects of essential oils in  in vitroandin vivomodels of cancer, focusing on the studies performed with the whole phytocomplex rather than single constituents.


1991 ◽  
Vol 260 (2) ◽  
pp. L13-L28 ◽  
Author(s):  
E. Sigal

The metabolism of arachidonic acid by cyclooxygenase and lipoxygenase enzymes results in a wide range of oxidized products with potent biological activities. These metabolites, which include the prostaglandins and leukotrienes, have been implicated in the pathogenesis of a variety of inflammatory diseases. Research over the last decade has focused primarily on the elucidation of the chemical structure of the metabolites and their biological effects in vitro and in vivo. Recently, research on the enzymes that produce these bioactive metabolites through oxidization of arachidonic acid has intensified. Recombinant DNA techniques have enabled investigators to determine the nucleotide sequences for several of the enzymes in the arachidonic acid cascade. The resulting cDNAs are now being used to further investigate the biochemical and biological features of arachidonic acid metabolism. The purpose of this paper is to review how the cDNAs for these enzymes were obtained, what information they convey, and how they are being applied in current research.


Author(s):  
João Junqueira ◽  
Michelle do Nascimento ◽  
Lucas da Costa ◽  
Lincoln Romualdo ◽  
Francisco de Aquino ◽  
...  

Xylopia aromatica (Lam.) Mart. (Annonaceae) is a typical species from the Brazilian cerrado that presents medicinal properties. The plant is distinguished by its large white flowers which produce a pleasant fragrance. X. aromatica is characterized by a wide range of medicinal application. These characteristics have motivated us to investigate the flowers volatile organic compounds (VOCs) via in vivo and in vitro protocols by a headspace solid-phase microextraction (HS‑SPME) technique combined with gas chromatography-mass spectrometry (HS-SPME/GC‑MS). Four different fibers, extraction times and temperatures were the parameters changed to lead to the maximum profiling of the volatile constituents. Data were analyzed using principal component analysis (PCA). A total of 77 VOCs were extracted from the floral scent, with 52 and 68 extracted from in vivo and in vitro sampling, respectively, of which 48 were reported for the first time in the literature as volatile constituents from X. aromatica flowers. The extraction and identification of VOCs were successfully performed through HS-SPME/GC-MS. The PCA data allowed the identification of parameters that led to the maximum number of VOCs, which were polyacrylate (PA) and carboxen/polydimethylsiloxane (CAR/PDMS) fibers, 60 min extraction time and temperature of 29.0 °C. Among the volatile constituents identified, sesquiterpenes predominated, comprising about 61.04%.


Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3959
Author(s):  
Laísa Cordeiro ◽  
Hermes Diniz-Neto ◽  
Pedro Figueiredo ◽  
Helivaldo Souza ◽  
Aleson Sousa ◽  
...  

Klebsiella pneumoniae causes a wide range of community and nosocomial infections. The high capacity of this pathogen to acquire resistance drugs makes it necessary to develop therapeutic alternatives, discovering new antibacterial molecules. Acetamides are molecules that have several biological activities. However, there are no reports on the activity of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide. Based on this, this study aimed to investigate the in vitro antibacterial activity of this molecule on K. pneumoniae, evaluating whether the presence of the chloro atom improves this effect. Then, analyzing its antibacterial action more thoroughly, as well as its cytotoxic and pharmacokinetic profile, in order to contribute to future studies for the viability of a new antibacterial drug. It was shown that the substance has good potential against K. pneumoniae and the chloro atom is responsible for improving this activity, stabilizing the molecule in the target enzyme at the site. The substance possibly acts on penicillin-binding protein, promoting cell lysis. The analysis of cytotoxicity and mutagenicity shows favorable results for future in vivo toxicological tests to be carried out, with the aim of investigating the potential of this molecule. In addition, the substance showed an excellent pharmacokinetic profile, indicating good parameters for oral use.


2020 ◽  
Vol 27 (3) ◽  
pp. 362-379 ◽  
Author(s):  
Mirjana B. Čolović ◽  
Milan Lacković ◽  
Jovana Lalatović ◽  
Ali S. Mougharbel ◽  
Ulrich Kortz ◽  
...  

Background: Polyoxometalates (POMs) are negatively charged metal-oxo clusters of early transition metal ions in high oxidation states (e.g., WVI, MoVI, VV). POMs are of interest in the fields of catalysis, electronics, magnetic materials and nanotechnology. Moreover, POMs were shown to exhibit biological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic. Methods: The literature search for this peer-reviewed article was performed using PubMed and Scopus databases with the help of appropriate keywords. Results: This review gives a comprehensive overview of recent studies regarding biological activities of polyoxometalates, and their biomedical applications as promising anti-viral, anti-bacterial, anti-tumor, and anti-diabetic agents. Additionally, their putative mechanisms of action and molecular targets are particularly considered. Conclusion: Although a wide range of biological activities of Polyoxometalates (POMs) has been reported, they are to the best of our knowledge not close to a clinical trial or a final application in the treatment of diabetes or infectious and malignant diseases. Accordingly, further studies should be directed towards determining the mechanism of POM biological actions, which would enable fine-tuning at the molecular level, and consequently efficient action towards biological targets and as low toxicity as possible. Furthermore, biomedical studies should be performed on solutionstable POMs employing physiological conditions and concentrations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ofentse Mazimba ◽  
Tebogo E. Kwape ◽  
Goabaone Gaobotse

: Indigenous and medicinal plants have proven crucial to the health of mankind for a very long time. Dichrostachys cinerea is a traditional herb used in the treatment of a variety of human diseases in African and Indian traditional medicine. This paper reviews the ethnomedicinal uses, phytochemical constituents, pharmacology and toxicity of D. cinerea, in order to provide scientific consensus for further research and exploitation of its therapeutic potential of this plant. Information was accessed by literature searches in different sources including Science direct, PubMed and Google Scholar. The findings of this review paper highlight D. Cinerea as an important component of African and Indian traditional medicine. D. cinerea is traditionally used in the treatment of rheumatism, diabetes, coughs, asthma, kidney disorders, gonorrhea, syphilis, malaria, tuberculosis, epilepsy, snake bites, pains, wounds, boils, burns, toothache, headache, and scabies. D. cinerea displays a diverse phytochemistry, with a wide range of isolated compounds that have well documented biological activities. D. cinerea has demonstrated both in vitro and in vivo biological activities. In vitro biological activities exhibited include enzyme inhibition, antibacterial, anti-fungal and anti-malarial activities. In vivo activities demonstrated by D. cinerea include anti-inflammatory, anti-diarrheal, anti-analgesic, hepatoprotective, anti-uro lithiatic, anti-lice, anti-dandruff and neuropharmacological activities. Animal studies have elucidated non-toxicity of D. cinerea for the ethanol root extract and methanol and water leaf extracts. It is vital that future studies on D. cinerea focus on the mechanisms of action behind these biological activities for both the crude extract and its individual chemical compounds. These studies could possibly lead to clinical trials to confirm biological activities found in animal studies. Further studies on multi-target network pharmacology, and molecular docking technology of D. cinerea sub fractions for enzyme inhibitions and neuropharmacological activities are of great importance and could accelerate the process of pharmaceutical development of this plant.


Sign in / Sign up

Export Citation Format

Share Document