scholarly journals 266 Response of Winter-injured Peach Trees to Pruning

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 437B-437
Author(s):  
Stephen S. Miller ◽  
Ross E. Byers

When temperatures reach -26 °C and lower, even for brief periods of time, damage to fruit buds and woody tissue of the peach tree is common. Low temperature injury on peach can lead to bark damage, gummosis, increased incidence of perennial canker, partial or complete crop losses, reduced shoot growth and/or tree death. In Jan. 1994 the Eastern Panhandle of West Virginia and surrounding states experienced three successive nights of temperatures at -28 °C or lower. Beginning in Apr. 1994, 7-year-old `Blake'/Lovell peach trees were subjected to four pruning levels (none, light, heavy, and dehorned) each at three times (April, May, and June) in a replicated factorial arrangement. Specific pruning treatments were applied only in 1994; a local commercially recommended level and time of pruning were applied to all trees from 1995 through 1998. Treatments had a significant effect on canopy volume and fruit yields. Trees receiving no pruning or dehorned trees and trees pruned in June had lower yields in 1995 than trees pruned in April or May or trees receiving a light or heavy pruning. These treatments also produced fewer large fruit at harvest. Lower yields and smaller fruit led to reduced dollar returns per hectare in 1995. Yields from 1996 through 1998 were lower for trees that were dehorned pruned in 1994 although there were little or no differences in fruit sizes between treatments. Time and/or level of pruning had effects on the number of cankers and number of large (>5.1 cm) cankers.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 419C-419
Author(s):  
T.J. Tworkoski ◽  
R. Scorza

Peach trees (Prunus persica L.) with diverse shoot growth habits have been developed, but little is known about their root systems. Characterizing shoot and root systems can improve basic understanding of peach tree growth and be important in the development of rootstocks and own-rooted trees. This research determined shoot and root characteristics of four peach tree growth habits (compact, dwarf, pillar, and standard). Seed from four peach growth habits were planted in 128-L containers, grown outside during the 1998 growing season, and then harvested. Compact tree leaf number (1350/tree) was twice, but leaf area (6 cm2/leaf) was half, that of pillar and standard trees. The number of lateral branches in compact trees (34) was nearly three-times more than in pillar and standard trees. The leaf area index (LAI) of pillar trees was greater than compact and standard trees (13 compared with 4 and 3, respectively) due to a narrower crown diameter. Dwarf tree shoots were distinct with few leaves (134 per tree) and a large LAI of 76. Compact trees grew more higher-order lateral roots than pillar and standard trees. More second-order lateral (SOL) roots were produced by compact than standard trees (1.2 vs. 0.8 SOL roots/cm first-order lateral root). Pillar trees had higher shoot-to-root dry weight ratios (2.4) than compact and standard trees (1.7 for both) due to smaller root dry weights. The results indicate fundamental differences in root characteristics among the peach tree growth habits. Compact trees had more higher order lateral roots in roots originating near the root collar (i.e., more fibrous roots), and this correlated with more lateral branches in the canopy. Shoot weights were the same among pillar, compact, and standard trees but root weights were less in pillar trees, resulting in greater shoot-to-root dry weight ratios. These results indicate significant differences in root as well as shoot architecture among growth habits that can affect their use as scion or rootstock varieties.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 658
Author(s):  
Daniel L. Frank ◽  
Stephen Starcher ◽  
Rakesh S. Chandran

The peachtree borer, Synanthedon exitiosa, and lesser peachtree borer, S. pictipes, are economically important indirect pests of peach in West Virginia. The purpose of this 3-year study was to compare the efficacy of mating disruption and post-harvest trunk sprays of chlorpyrifos insecticide for control of this pest complex in a commercial peach orchard. Overall, Isomate PTB-Dual disruption dispensers applied at a rate of 371/ha significantly disrupted the male mate-finding behavior of S. exitiosa and S. pictipes. In addition, the infestation of peach trees by S. exitiosa larvae did not vary significantly between mating disruption and insecticide treated plots. Hot-spot maps of S. exitiosa infestation showed significant spatial clusters of infestation predominately near the perimeter of all orchard plots, or where trees were missing within and/or between rows. The generation of standard deviational ellipses revelated that the location of S. exitiosa infestations in orchard plots remained relatively constant between years, and were generally oriented in a north and easterly direction, which coincided with the prevailing wind direction. Although our data indicated that mating disruption can provide growers with an effective non-chemical alternative to chlorpyrifos trunk sprays, several variables may affect its long-term success in West Virginia peach orchards; most notably the presence of high population densities, problems with maintaining adequate pheromone coverage, and the need for area-wide implementation.


2007 ◽  
Vol 97 (3) ◽  
pp. 359-365 ◽  
Author(s):  
V. Rossi ◽  
L. Languasco

Environment-controlled studies were carried out to determine the growth of Taphrina deformans under different conditions of temperature, humidity, and nutrient availability similar to those found on plant surfaces during the peach-growing season. Both ascospores and blastospores were able to bud at all temperatures tested (5 to 37°C), with the optimum at 14 and 21°C, respectively. Temperature <20°C favored ascospore production and release, with the optimum at 10°C. Budding was approximately two-and-a-half times higher in a film of water than on a dry substrate, with 100% relative humidity and blastospores also maintained a certain budding ability at lower humidity levels (minimum tested = 47%). Both spore types did not bud after ≈50 to 55 h in the absence of external nutrients. In the presence of a periodically renewed carbon source, such as simple sugars, at concentrations that typically are present on peach plant surfaces, the fungus maintained its budding capability over time. Results showed that T. deformans is able to bud profusely under a wide range of environmental conditions that occur on peach tree surfaces. This work supports the hypothesis that T. deformans is a part of the normal epiphytic mycoflora of peach trees throughout the entire growing season.


1972 ◽  
Vol 50 (2) ◽  
pp. 253-261 ◽  
Author(s):  
J. D. Mahon ◽  
D. T. Canvin

The growth habit of "grass-clump" dwarf wheat plants can be affected by extremely short 16° treatments if given repeatedly. To localize the earliest growth responses in plants of one such hybrid (Mql × KF 1), the temperature sensitivity of plants of different ages, and the earliest temperature-induced changes in growth, development, and shoot physiology were investigated and compared with the responses of normal wheat plants.Mql × KF 1 plants growing at 26° responded to progressively shorter 16° treatments as they aged and plants exposed to 16° after 10 days growth at 26° were unable to recover from low temperature treatments of 3–5 days duration. Although shoot growth (as dry weight) of Mql × KF 1 stopped abruptly after 7 days at 16°, root growth (as dry weight) continued for at least 15 days. The rates of CO2 and water vapor exchange in individual leaves responded to low temperature similarly in both the dwarf and normal plants and did not markedly decrease until after 4 days at 16°. The most rapid low temperature response specific to Mql × KF 1 plants was cessation in primary tiller development immediately after the beginning of 16° exposure. It is proposed that the primary 16° effect is on the shoot meristematic region and that other changes in growth and physiology result from the lack of meristematic activity in the young growing region.


2017 ◽  
Vol 15 (2) ◽  
pp. e0803 ◽  
Author(s):  
Isabel Abrisqueta ◽  
Wenceslao Conejero ◽  
Lidia López-Martínez ◽  
Juan Vera ◽  
M. Carmen Ruiz Sánchez

 The objectives of the paper were to study the pattern of root growth (measured by minirhizotrons) in relation to trunk, fruit and shoot growth and the effects of crop load on tree growth and yield in peach trees. Two crop load (commercial and low) treatments were applied in a mature early-maturing peach tree orchard growing in Mediterranean conditions. Root growth dynamics were measured using minirhizotrons during one growing season. Shoot, trunk and fruit growth were also measured. At harvest, all fruits were weighed, counted and sized. Roots grew throughout the year but at lower rates during the active fruit growth phase. Root growth was asynchronous with shoot growth, while root and trunk growth rates were highest after harvest, when the canopy was big enough to allocate the photo-assimilates to organs that would ensure the following season’s yield. Shoot and fruit growth was greater in the low crop load treatment and was accompanied by a non-significant increase in root growth. High level of fruit thinning decreased the current yield but the fruits were more marketable because of their greater size.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1088a-1088
Author(s):  
Cindy L. Flinn ◽  
Edward N. Ashworth

Examination of both frozen specimens and -5C freeze-fixed buds showed that ice crystals were not uniformly distributed in blueberry flower buds. Localized freezing was also evidenced by detection of multiple freezing events using differential thermal analysis (DTA). Upon cooling, an initial exotherm occurred just below 0C and coincided with ice formation in adjacent woody tissue. Multiple low temperature exotherms (LTE), which have been reported to correspond with the freezing of individual blueberry florets (Bierman, et al. 1979. ASHS, 104(4):444-449), occurred between -7C and -28C. The presence and temperature of LTEs was influenced by cooling rates and whether buds were excised. LTE temperatures did not correlate with hardiness of buds frozen under field-like conditions. Results suggested that DTA of excised buds was not an appropriate method for determining hardiness.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1122c-1122
Author(s):  
David C. Ferree

In 1981, four apple cultivars were established as a low trellis hedgerow on M.9 or free-standing central leaders on M.7 at the recommended or half the recommended spacing with the close planted trees either root pruned annually at bloom or hedged in August. Planting at half the spacing and annual summer hedging 2 sides decreased TCA 25% and canopy volume 51% with no effect on shoot growth, while annual root pruning decreased TCA 34%, canopy volume 50% and shoot length 25%. Planting at half spacing and either hedging or root pruning reduced yields per tree. Efficiency as measured by yield TCA was decreased by hedging and as measured by yield/m3 canopy volume was increased by both treatments with hedging having the greatest effect. The cumulative yield/ha was increased by both hedging and root pruning with no difference between them. Fruit size was decreased by close planting and root pruning caused a greater decrease than hedging. Close planting increased the number of spurs and shoots and LAI per unit volume of canopy with no difference between hedging or root pruning. `Empire' outproduced `Smoothee' and `Delicious' on the trellis and `Lawspur' had higher yields than any other cultivar in the central leader.


Sign in / Sign up

Export Citation Format

Share Document