scholarly journals COVER CROP AND NITROGEN FERTILIZER RATE INFLUENCES ON YIELDS OF SEQUENTIALLY PLANTED VEGETABLES

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 570c-570
Author(s):  
Owusu A. Bandele ◽  
Marion Javius ◽  
Byron Belvitt ◽  
Oscar Udoh

Fall-planted cover crops of hairy vetch (Vicia villosa Roth), Austrian winter pea (Pisum sativum subsp. arvense L. Poir), and crimson clover (Trifolium incarnatum L.) were each followed by spring-planted 'Sundance' summer squash [Cucurbita pepo var. melopepo (L.) Alef.] and 'Dasher' cucumber (Cucumis sativus L.). Squash and cucumber crops were followed by fall 'Florida Broadleaf mustard green [Brassica juncea (L.) Czerniak] and 'Vates' collard (Brassica oleracea L. Acephala group), respectively. The same vegetable sequences were also planted without benefit of cover crop. Three nitrogen (N) rates were applied to each vegetable crop. Squash following winter pea and crimson clover produced greater yields than did squash planted without preceding cover crop. Cucumber following crimson clover produced the greatest yields. No cover crop effect was noted with mustard or collard. Elimination of N fertilizer resulted in reduced yields for all crops, but yields of crops with one-half the recommended N applied were generally comparable to those receiving the full recommended rate.

HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1163-1166 ◽  
Author(s):  
John R. Teasdale ◽  
Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2334
Author(s):  
Heather L. Tyler

Conservation management practices can improve soil health while minimizing deleterious effects of agriculture on the environment. However, adoption of these practices, particularly cover crops, is not widespread, as they often reduce crop yields compared to traditional management practices. The purpose of the current study was to determine if a two-species cover crop treatment of rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.) could increase soil health parameters and maximize soybean (Glycine max L.) yield greater than rye only in tilled and no-till Mississippi field soils. Enhanced microbial biomass and organic matter input from cover crops increased the activities of β-glucosidase, cellobiohydrolase, fluorescein diacetate hydrolysis, N-acetylglucosaminidase, and phosphatase in surface soils. Rye plus clover tended to elicit higher activities than rye only in no-till plots. Both cover crop treatments inhibited soybean yield in tilled plots by 11–25%. These results indicate that tillage exacerbates yield inhibition by cover crops in soybean and that double-species cover crop treatments were more consistent in increasing activities linked to nutrient cycling. Further study examining different combinations of cover crops in no-till systems is necessary to gain a better understanding of how they can be implemented to enhance soil health while maximizing crop yield.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 20-21
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Utilization of cool-season cover crops has been shown to increase soil health and cash crop performance in minimum tillage cash crop systems. Though evidence that grazing of cover crops can be viable is limited. Our objective was to determine animal and forage performance when grazing a cool-season annual cover-crop. Twelve 1.2 ha pastures were established in a forage mix consisting of black oats (Avena strigose), cereal rye (Secale cereal), crimson clover (Trifolium incarnatum), and T-raptor (Brassica napus × B. rapa) and randomly allocated to be grazed either 0, 30, 60, or 90 days. Three tester steers were randomly placed in each paddock with the exception of control paddocks and allowed ad libitum grazing. Animals were weighed every 30 d for determination ADG and total gain (TG). Forage was harvested bi-weekly and analyzed for NDF and ADF using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data were analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences were found in ADG between 90 and 60 days grazed (4.2 ± 0.12 vs. 2.8 ± 0.12 kg/d; P &lt; 0.01) and 90 and 30 days grazed (4.2 ± 0.12 vs 2.7 ± 0.12 kg/d; P &lt; 0.01). Differences in TG were detected between 90 and 60 days grazed (819 ± 13.35 vs. 386.67 ± 13.35 kg; P &lt; 0.01), between 90 and 30 days grazed (819 ± 13.35 vs 261.33 ± 13.35 kg; P &lt; 0.01), and between 60 and 30 days grazed (386.67 ± 13.35 vs 261.33 ± 13.35 kg, P &lt; 0.01). No differences in NDF (44.86%, P = 0.99) or ADF (27.20%, P = 0.92) were detected between treatments. These results indicate that different grazing periods could influence cattle growth and performance without negatively impacting forage quality and production.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 611e-611
Author(s):  
D.C. Sanders ◽  
G.D. Hoyt ◽  
J.C. Gilsanz ◽  
J.M. Davis ◽  
J.T. Garrett ◽  
...  

`Jewel' sweetpotato was no-till planted into crimson clover, wheat, or winter fallow. Then N was applied at 0, 60, or 120 kg·ha–1 in three equal applications to a sandy loam soil. Each fall the cover crop and production crop residue were plowed into the soil, beds were formed, and cover crops were planted. Plant growth of sweetpotato and cover crops increased with N rate. For the first 2 years crimson clover did not provide enough N (90 kg·ha–1) to compensate for the need for inorganic N. By year 3, crimson clover did provide sufficient N to produce yields sufficient to compensate for crop production and organic matter decomposition. Soil samples were taken to a depth of 1 m at the time of planting of the cover crop and production crop. Cover crops retained the N and reduced N movement into the subsoil.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 410-413 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner ◽  
John Cardina ◽  
Emilie E. Regnier

Field and laboratory studies were conducted to investigate the mechanisms of weed suppression by cover crops. High-performance liquid chromatograph analysis and a seed germination bioassay demonstrated that rye (Secale cereale L.) can be leached of its allelochemicals, redried, and used as an inert control for separating physical suppression from other types of interference. In a field study, rye, crimson clover (Trifolium incarnatum L.), hairy vetch (Vicia villosa Roth.), barley (Hordeum vulgare L.), and a mixture of the four species suppressed the emergence of eastern black nightshade (Solanum ptycanthum Dun.). Crimson clover inhibited the emergence of eastern black nightshade beyond what could be attributed to physical suppression alone. The emergence of yellow foxtail [Setaria glauca (L.) Beauv.] was inhibited by rye and barley but not by the other cover crops or the cover crop mixture.


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 843-847 ◽  
Author(s):  
Steven M. Brown ◽  
Ted Whitwell

Eleven herbicide systems were evaluated from 1981 to 1983 for cotton (Gossypium hirsutumL. ‘Stoneville 825’) planted no-till directly into cover crops or winter fallow and for cotton planted following conventional tillage. Herbicide systems consisted of paraquat (1,1’-dimethyl-4,4’-bipyridinium ion) or glyphosate [N-(phosphonomethyl)glycine] and/or residual herbicides applied prior to crop emergence. Some systems also included early postemergence or postemergence-directed applications. Cover crops were crimson clover (Trifolium incarnatumL.), hairy vetch (Vicia villosaRoth.), and rye (Secale cerealeL.). Soil cover in fallow treatments was comprised mainly of cotton stalk residue. Conventional tillage and seedbed preparation included fall moldboard plowing and spring disking/smoothing. Treatments were maintained in the same site each year. Order of cover crop susceptibility to herbicides applied prior to crop emergence was rye>clover>vetch. In 1981, all residual treatments except cyanazine {2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropanenitrile} alone prior to crop emergence provided better than 80% control of annual weeds. In subsequent years only systems that included applications prior to crop emergence and postemergence-directed herbicides provided acceptable control. From 1981 to 1983, annual grasses increased 20- to 100-fold for systems in which control was poor. Weed control was generally superior in conventional tillage. Vetch adversely affected cotton stands in all 3 yr. Also, in 1982, reduced cotton stands resulted from cyanazine treatments applied prior to crop emergence in clover, vetch, and fallow. Cotton yields were affected by cover dessication, annual weed control, and cotton stands. Buildup of annual weeds reduced yields to near zero for some treatments in 1983.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 965-972 ◽  
Author(s):  
J. C. Himmelstein ◽  
J. E. Maul ◽  
K. L. Everts

Triploid watermelon cultivars are grown on more than 2,023 ha in Maryland and in Delaware. Triploid watermelon cultivars have little host resistance to Fusarium wilt of watermelon (Fusarium oxysporum f. sp. niveum). The effects of four different fall-planted cover crops (Vicia villosa, Trifolium incarnatum, Secale cereale, and Brassica juncea) that were tilled in the spring as green manures, and bare ground, were evaluated alone and in combination with the biocontrol product Actinovate (Streptomyces lydicus) on Fusarium wilt severity and watermelon fruit yield and quality. Six field experiments were conducted over 3 years in Beltsville and Salisbury, MD and Georgetown, DE. Both V. villosa and T. incarnatum significantly suppressed Fusarium wilt of watermelon as much as 21% compared with watermelon in nonamended plots. However, no suppression of Fusarium wilt occurred at low disease levels or where low cover crop biomass was present. In general, Beltsville, MD had lower disease levels than Salisbury, MD and Georgetown, DE. T. incarnatum was the only cover crop that yielded significantly more fruit than nonamended treatments (129% more fruit per hectare) but only for one field trial. The Actinovate product either did not reduce Fusarium wilt or the magnitude of the reduction was nominal. Actinovate significantly reduced Fusarium wilt by 2% in 2009 and as much as 7% in 2010, and increased Fusarium wilt severity by 2.5% in 2011. Actinovate significantly increased yield for one field trial but only when applied to nonamended or Secale cereal-amended plots. This is the first report of a reduction in Fusarium wilt following a T. incarnatum cover crop incorporated as a green manure.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 29-30
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Utilization of cool-season cover crops has been shown to increase soil health and cash crop performance in minimum tillage cash crop systems. Though evidence that grazing of cover crops can be viable is limited. Our objective was to determine animal and forage performance when grazing a cool-season annual cover-crop. Twelve 1.2 ha pastures were established in a forage mix consisting of black oats (Avena strigose), cereal rye (Secale cereal), crimson clover (Trifolium incarnatum), and T-raptor (Brassica napus × B. rapa) and randomly allocated to be grazed either 0, 30, 60, or 90 days. Three tester steers were randomly placed in each paddock with the exception of control paddocks and allowed ad libitum grazing. Animals were weighed every 30 d for determination ADG and total gain (TG). Forage was harvested bi-weekly and analyzed for NDF and ADF using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data was analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences were found in ADG between 90 and 60 days grazed (4.2 ± 0.12 vs. 2.8 ± 0.12 kg/d; P &lt; 0.01) and 90 and 30 days grazed (4.2 ± 0.12 vs 2.7 ± 0.12 kg/d; P &lt; 0.01). Differences in TG were detected between 90 and 60 days grazed (819 ± 13.35 vs. 386.67 ± 13.35 kg; P &lt; 0.01), between 90 and 30 days grazed (819 ± 13.35 vs 261.33 ± 13.35 kg; P &lt; 0.01), and between 60 and 30 days grazed (386.67 ± 13.35 vs 261.33 ± 13.35 kg, P &lt; 0.01). No differences in NDF (44.86%, P = 0.99) or ADF (27.20%, P = 0.92) were detected between treatments. These results indicate that different grazing periods could influence cattle growth and performance without negatively impacting forage quality and production.


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Aref A. Abdul-Baki ◽  
J.R. Teasdale ◽  
R. Korcak ◽  
D.J. Chitwood ◽  
R.N. Huettel

A low-input sustainable agricultural system for the production of staked, fresh-market field tomatoes (Lycopersicon esculentum Mill.) is described. The system uses winter annual cover crops to fix N, recycle leftover nutrients, produce biomass, and prevent soil erosion throughout the winter and spring. Yields of tomato plants grown in hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) plus hairy vetch mulches were higher than those grown in the conventional black polyethylene (BP) mulch system in 2 of 3 years. Fruit were heavier with the plant mulches than with BP mulch. Eight weeks after transplanting, N levels in tomato leaves were higher with plant than with BP mulch, although the plant mulch plots received only 50% of the N applied to the BP plots. The cover crops had no effect on populations of five phytoparasitic nematode species.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 462E-463
Author(s):  
Greg D. Hoyt

An experiment was established to determine the effect of different winter cover crops residues on yields of no-till pumpkins, yellow summer squash, and sweet corn. Residue treatments of fallow, triticale, crimson clover, little barley, and crimson clover + little barley were fall established and killed before spring no-till planting in 1998 and 1999. All summer vegetables received recommended fertilizer rates and labeled pesticides. Spring cover crop growth and biomass measurements ranged from 1873 to 6362 kg/ha. No-till sweet corn yields among the various cover residue treatments were greater where crimson clover and crimson clover + little barley (mixture) were used as residue in 1999, but not significantly different in 1998. No-till pumpkins showed the beneficial affect cover crop residue had on vegetable yields when dry conditions exist. Triticale and crimson clover + little barley (mixture) residues reduced soil water evaporation and produced more numbers of fruit per hectare (5049 and 5214, respectively) and greater weights of fruit (20.8 and 20.9 Mg/ha) than the other residue treatments (3725 to 4221 fruit/ha and 11.8 to 16.1 Mg/ha, respectively). No-till summer squash harvest showed steady increases in yield through time by all treatments with crimson clover residue treatment with the greatest squash yields and triticale and little barley residue treatments with the lowest squash yields. We found that sweet corn and squash yields were greater where legume cover residues were used compared to grass cover residues, whereas, pumpkin yields were higher where the greatest quantity of mulch was present at harvest (grass residues).


Sign in / Sign up

Export Citation Format

Share Document