scholarly journals The Vegetative Response of 'Concord' Grapevines to Soil pH

HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 890-893 ◽  
Author(s):  
Terence R. Bates ◽  
Richard M. Dunst ◽  
Theodore Taft ◽  
Michael Vercant

One- and 2-year-old 'Concord' (Vitis labruscana L.) grapevines were used to study the effect of soil pH on vegetative growth and nutrition. Ninety-eight, own-rooted, 'Concord' grapevines were planted in 94.6-L pots containing vineyard soil adjusted to seven soil pH levels ranging from 3.5 to 7.5. After the first growing season, seven vines from each soil pH treatment were randomly selected, destructively harvested, and measured for root and shoot growth. The remaining 49 vines over-wintered in the pots, were defruited in year two, and were destructively harvested at the end of the second growing season. There was a reduction in root biomass below soil pH of 4.5 and a greater reduction in shoot biomass leading to a higher root: shoot ratio. There were no significant differences in vegetative growth of young 'Concord' vines from a soil pH of 5.0-7.5. However, there was a trend toward lower shoot biomass and higher root: shoot ratio at the highest soil pH level. Phylloxera nodosities on roots were present in equal densities at all soil pH values. However, the negative impact of phylloxera on vine dry mass was greater on vines under nutrient stress at the highest and lowest pH treatments than on those with adequate nutrition at the mid-range soil pH values.

2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


2019 ◽  
Vol 32 ◽  
pp. 337-351
Author(s):  
Mohammed J. Mustafa ◽  
Mohammed A. Abdulkareem

Field experiment was conducted in Mohajaran region, Abu-Al-Khaseeb district, Basrah province during the growing season 2018. The study was aimed to evaluate the effect of integration of chemical fertilizer (triple superphosphate) with manure (cattle residue) and/ or biofertilizer (Aspergillus niger) on some soil properties and phosphorus availability to sunflower during growing season. Samples were collected at seedling, vegetative growth, flowering and post-harvest stage. pH, EC, moisture content and available P were determined. Results showed that application of chemical fertilizer significantly affected soil pH, EC, and available P, but showed no effect on soil moisture content. Soil pH decreased and EC increased at seedling stage, while EC was decreased at harvest. Available P values were increased at all growing stages. Incorporation of manure at rate of 30 Mg ha-1 considerably decreased the soil pH and increased EC at seedling stage, soil moisture, and available P at all growing stages.. Inoculation the seeds with A. niger showed no significant effect on  soil pH, EC, and soil moisture but significantly increased available P, at vegetative growth and flowing stages . Results  showed that the effect of biofertilizer on available P was in bar with the application of manure at rate of 15 Mg ha-1 .Highest  value of available P was associated with combination of 120 Kg P ha-1 + 30 Mg ha-1 + inoculation with fungus.


1998 ◽  
Vol 15 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Minyi Zhou ◽  
Terry L. Sharik ◽  
Martin F. Jurgensen ◽  
Dana L. Richter ◽  
Margaret R. Gale ◽  
...  

Abstract Growth of northern red oak (Quercus rubra L.) seedlings in relation to colonization by indigenous ectomycorrhizal (ECM) fungi was studied in oak and pine stands in northern Lower Michigan that were subjected to overstory and understory manipulations. Two stand types (oak and pine), three blocks of each stand type, four canopy cover treatments (clearcut, 25% cover (50% cover in the first year), 75% cover and uncut), and two understory treatments (shrub removal and untreated control) were involved in the experiment. Northern red oak acorns from a common seed source were sown in May 1991 to simulate natural regeneration. Seedling growth and its relation to percent ECM were evaluated for the first two growing seasons. A significantly larger root-collar diameter of northern red oak seedlings was found in pine stands than in oak stands for the first growing season (P < 0.001). However, this difference could not be explained by overall ECM colonization. Seedling growth and ECM colonization were not affected by the shrub removal treatment during the first two growing seasons. In contrast, northern red oak seedling size and weight were strongly influenced by the overstory treatment, with lower levels of canopy cover resulting in larger seedlings. Seedlings had the greatest percent ECM in the partial cover treatment (25-50%) and the lowest percent ECM in the clearcut. After accounting for the effects of canopy cover, the relationship between total biomass of northern red oak seedlings and percent ECM was positively correlated (P = 0.001) during the first growing season and negatively correlated (P = 0.038) during the second growing season. A positive relationship between root/shoot ratio and percent ECM also existed in the first year (P = 0.003) in both oak and pine stands, but only in the oak stands in the second year (P = 0.039). These results indicate that ECM promoted more root development than shoot development, particularly underpartial canopy cover (25%-50%) treatments, where the greatest percent ECM and largest root/shoot ratio were found. Moreover, our results suggest that these partial canopy cover treatments provide a favorable balance between ECM abundance and northern red oak seedling development in both oak and pine stands on intermediate quality sites, and may lead to northern red oak regeneration success on such sites. North. J. Appl. For. 15(4):182-190.


1977 ◽  
Vol 57 (1) ◽  
pp. 55-64 ◽  
Author(s):  
WM. van LIEROP ◽  
A. F. MacKENZIE

The average soil pH of 10 organic soils was significantly influenced by drying and the salt concentration of the suspending media. Accordingly, mean soil pH of field-moist and oven-dried soils was pH 5.0 and 4.5, 4.1 and 3.9, and 3.8 and 3.6 for soils suspended in water, 0.015 M CaCl2 and 1 M KCl. A significant treatment–soil interaction indicated that the soils responded differently to the treatments. No junction potentials were found when the ionic strength of the solution was 0.01 M CaCl2 equivalent or greater. Milli-equivalents exchangeable hydrogen (−0.984**), percent hydrogen saturation (−0.966**) milli-equivalents extractable bases (0.937**) and percent base saturation (0.957**) were more closely correlated with 1 M KCl pH values than with values in the other media. Liming influenced soil pH significantly on all field sites and within 8 h after application on two field sites. The influence of liming on soil pH tended to diminish the year after applications were made. Measured soil pH variability among treatments and replicates at various sampling dates ranged up to 1 pH unit during the growing season. However, it was about 0.2 pH unit on the control treatments with undetectable quantities of residual limestone. The quantity of reacted limestone was established at 25 and 40%, between 23 May and 31 July, on two sites (J.I.V. and S.B.). The reacted limestone was found to be proportional to the application rate.


1991 ◽  
Vol 9 (1) ◽  
pp. 36-37
Author(s):  
John J. McGuire ◽  
Wm. A. Johnson ◽  
Charles Dawson

Abstract After one growing season, root systems of Taxus media ‘Nigra’ and ‘Densiformis’ were similar, whether or not these fall-propagated rooted liners were given a cold treatment [−2.2°C (28°F) for 8 weeks] or left in the propagating beds until spring. However, storage did make propagation space available for two months for other uses. Outdoor spring propagated cuttings had more roots and a greater root shoot/ratio than indoor fall rooted cuttings, whether the latter were cold-treated or not.


HortScience ◽  
2010 ◽  
Vol 45 (12) ◽  
pp. 1824-1829 ◽  
Author(s):  
Gabriele Amoroso ◽  
Piero Frangi ◽  
Riccardo Piatti ◽  
Francesco Ferrini ◽  
Alessio Fini ◽  
...  

This experiment investigated the effect of different container design on growth and root deformation of littleleaf linden (Tilia cordata Mill.) and field elm (Ulmus minor Mill.). The trial was carried out over two growing seasons (2008 to 2009). In April 2008, 1-year-old bare-root seedlings of the two species were potted in three types of 1-L containers: Superoots® Air-Cell™ (The Caledonian Tree Company, Pathhead, UK), Quadro fondo rete (Bamaplast, Massa e Cozzile, Italy), and smooth-sided containers. At the beginning of the second growing season, the same plants were repotted in the following 3-L containers: Superoots® Air-Pot™ (The Caledonian Tree Company), Quadro antispiralizzante (Bamaplast), and smooth-sided containers. At the end of each growing season, a subset of the plants from each container type was harvested to determine shoot and root dry mass and root deformation (by dry weight of root deformed mass relative to the whole root mass). Chlorophyll fluorescence and leaf chlorophyll content were measured during the second growing season. For both species, at the end of first growing season, the poorest root architecture was observed in the smooth-sided containers, whereas Superoots® Air-Cell™ and Quadro fondo rete both reduced the percentage of deformed root mass. At the end of the second growing season, plants of both species grown in Superoots® Air-Pot™ showed less deformed root mass, whereas Quadro antispiralizzante provided good results only in littleleaf linden. A reduction of field elm root biomass and littleleaf linden shoot biomass was observed at the end of the trial in plants grown in Superoots® Air-Pot®. Plants grown in these containers showed less leaf chlorophyll content compared with plants grown in smooth-sided containers at the end of the second year.


2017 ◽  
Vol 9 (1) ◽  
pp. 502-507 ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba ◽  
Zakir Amin

The present study was aimed at assessing the root traits and rhizobial inoculation in relation to drought in common bean, Phaseolus vulgaris. Drought caused the largest decrease in shoot biomass followed by plant height, while an increase was recorded inroot/shoot ratio. Rhizobial inoculation caused largest increase in shoot biomass followed by root volume and root biomass and smallest increase in rooting depth. WB-216 and WB-185 had better rooting depth in all treatments. However, WB-83 (92.67) had highest rooting depth under irrigated conditions and SR-1 had highest rooting depth under irrigated conditions treated with rhizobium (108.50). Similarly, WB-216 had highest root/shoot ratio under drought (2.693) followed by WB-185 (1.285) while lowest value was recorded for Arka Anoop (0.373). In rhizobium treated drought condition, WB-216 recorded highest root/shoot ratio (5.540) followed by SFB-1 (1.967). Under irrigated conditions (both with and without rhizobium), WB-185 recorded highest root/shoot ratio while lowest was recorded for SR-1 (0.166). The mean squares due to root depth, root biomass and root volume were significant whereas the mean squares due to water and rhizobium were non-significant. Among interactions the genotype x water regime was significant for rooting depth (5 % level), genotype x rhizobia was significant for rooting depth and root volume (1 % level) and the interaction of genotype x water regime x rhizobium was significant for rooting depth, root biomass and root volume (1 % level). The results reinforce the need to further analyse the potential of other soil microbes in common bean rhizosphere in amelioration of the effects of water stress.


2004 ◽  
Vol 82 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Anna Liisa Ruotsalainen ◽  
Sami Aikio

We studied the competition between mycorrhiza-forming Trientalis europaea L. and nonmycorrhizal Carex bigelowii Torrey ex Schweinitz in a climate chamber experiment. The plants were grown either singly or together with a conspecific or heterospecific individual, with arbuscular mycorrhizal inoculum present or absent. Inoculated T. euro paea formed abundant arbuscular mycorrhizal structures, but the mycorrhizae did not affect its biomass or the whole plant's relative growth rate (RGR). Carex bigelowii did not form mycorrhizae, but its shoot biomass and RGR were lower in the inoculated pots. The presence of a conspecific or heterospecific plant had no effect on the shoot biomasses or RGR of either plant species. Mycorrhizal inoculation increased the root/shoot ratio of C. bigelowii in all competition treatments. The presence of C. bigelowii decreased the root/shoot ratio of T. europaea in both mycorrhizal and nonmy corrhizal state. Mycorrhizal inoculum thus had a direct negative effect on the growth of a nonmycorrhizal plant. The result suggests that although mycorrhizae may not always directly affect the performance of the host plant, they may possibly increase the host plant performance in relation to nonmycorrhizal neighbours. Mycorrhizal inoculum and mycorrhizal symbiosis may increase asymmetry of interspecific competition, which may facilitate the coexistence of plant species in cases when a larger individual is more negatively affected.Key words: arbuscular mycorrhiza, competitive asymmetry, micropropagation.


Author(s):  
Seidu Iddrisu Bawa ◽  
Charles Quansah ◽  
Henry Oppong Tuffour ◽  
Awudu Abubakari ◽  
Caleb Melenya

Two factorial pot experiments arranged in a Completely Randomised Design (CRD) with three replications were carried out to assess the impact of different levels of soil compaction and fertilizer amendments on root growth and biomass yield of maize (Zea mays L.) and soybean (Glycine max L.) plants. The treatments were different rates of bulk densities – 1.3, 1.5 and 1.7 Mg m-3 and fertilizer amendments comprising 100% poultry manure (applied at 15 g/plant), 100% 15:15:15 NPK fertilizer (applied at 2.89 g/plant) and 50% rate each of poultry manure and NPK fertilizer (applied at 7.5 g poultry manure + 1.45 g NPK/plant), and control (no fertilizer amendments). Soil compaction reduced the heights of maize and soybean plants. Increasing soil compaction resulted in the accumulation of most of the root biomass in the uncompacted soil above the compacted layer. Application of soil amendments increased the relative root biomass of maize plants in the uncompacted soil, while that in the compacted soil was reduced. In the case of soybean plants, although the relative root biomass in the uncompacted soil was relatively greater than that of maize plants, application of soil amendments tended to slightly decrease the relative root biomass to that of the control. The shoot biomass of both crops decreased with increasing soil bulk density. All the applied soil amendments significantly increased the shoot biomass of maize and soybean plants over the control. The magnitude of response of the crops to the soil amendments was greater in soybean than in maize plants. Soil compaction and amendments significantly influenced root/shoot ratio of both crops. The root/shoot ratio decreased with increasing compaction from 1.3 to 1.5 Mg m-3, however, at 1.7 Mg m-3, the root/shoot ratio increased. The fertilizer amendments significantly influenced the root/shoot ratio of maize but not soybean plants. The fertilizer amendments increased the biomass of both roots and shoots, being higher in the former than in the latter. The fertilizer amendments x compaction interactions showed that the root/shoot ratio was influenced by the type of crop, and the confounding effects of factor interactions on the relative increases/decreases in shoot and root growth. Overall, soil compaction accounted for 52 to 100% of the variations in the magnitude of the measured parameters of maize plants, and 62 to 98% for soybean plants. The ideal bulk density for shoot biomass production of both crops should, therefore, be within the range of 1.3 – 1.5 Mg m-3. At soil bulk density of 1.5 Mg m-3 and above, soil amendment should be added to ameliorate the negative impact of soil compaction.


2011 ◽  
Vol 62 (5) ◽  
pp. 367 ◽  
Author(s):  
P. R. Ward ◽  
J. A. Palta ◽  
H. A. Waddell

Perennial plants such as lucerne are now widely acknowledged as one means of controlling the expansion of dryland salinity in southern Australia. However, their inclusion in farming systems is limited by poor seedling vigour, thought to be associated with greater allocation of biomass to perennating organs in roots, and poor adaptation to some soils and climatic conditions in south-western Australia. For this reason, interest in other perennial options such as perennial wheat is increasing. In this research we compared early (29-day) seedling growth and root : shoot ratios for annual and perennial medics (Medicago truncatula and M. sativa), and for annual and perennial wheat (Triticum aestivum and Triticum × Agropyron cross). For the medics, the annual reached the 6-leaf stage after 29 days and produced more root and shoot biomass than lucerne (4-leaf stage after 29 days), but there was no difference in root : shoot ratio or depth of root growth. For wheat, there were no differences in root growth, shoot growth, or root : shoot ratio between the annual and perennial lines (Zadoks growth stages 23 and 21, respectively, after 29 days). The poor competitive performance of M. sativa seedlings relative to M. truncatula was not due to changed allocation of biomass to shoots, but was related more to seed size (2.7 and 5.0 mg, respectively). This does not seem to occur to the same extent in perennial wheat lines, suggesting that their seedling performance may be more competitive.


Sign in / Sign up

Export Citation Format

Share Document