scholarly journals Photosynthesis, Respiration, and Water Relations of Vinca and Salvia Subjected to Moisture Stress

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 896B-896
Author(s):  
Krishna Nemali* ◽  
Marc van Iersel

Subjecting bedding plants to non-lethal moisture stress is an established irrigation practice for bedding plants; however information on physiological responses of bedding plants to moisture stress is limited. We examined the CO2 exchange rates (CER) and water relations of salvia (Salvia splendens) and vinca (Catharanthus roseus) during moisture stress. Seedlings of both species were grown from seed in 7-L trays containing a soilless growing medium. After plants completely covered the trays, they were irrigated and shifted into whole-plant gas exchange chambers (27 °C and daily light integral of 7.5 mol/m2) arranged inside a growth chamber. Inside the gas exchange chambers, the growing medium was allowed to dry and plants were re-watered after wilting. Results from this study indicate that the growth rate (moles of CO2 gained by plants in a day) of salvia was higher than vinca before experiencing moisture stress; however the volumetric moisture content of the growing medium at which plant growth decreased was higher for salvia than for vinca. During moisture stress, the decrease in growth rate of salvia was gradual and that of vinca was rapid. After re-watering the plants, leaf water potential (ΨL) and growth rate of vinca revived completely, and ΨL of salvia remained low (more negative), whereas its growth rate revived completely. This study shows that bedding plant species respond differently to moisture stress, particularly with respect to the critical substrate moisture level for initiating moisture stress and the rate of development of moisture stress.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1111D-1111 ◽  
Author(s):  
Marc W. van Iersel ◽  
Sue Dove

Efficient water use in nurseries is increasingly important. In recent years, new soil moisture sensors (ECH2O probes) have become available, making it possible to monitor the moisture content of the growing medium in containers. One piece of information that is lacking for fully-automated irrigation systems is how much water actually needs to be present in the growing medium to prevent detrimental effects of drought on plants. We determined the effect of substrate moisture on photosynthesis and plant water relations of hydrangea and abelia. Growth rates of these species were measured during two subsequent drying cycles to determine how drought affects the growth rate of these species. Whole-plant photosynthesis, an indicator of growth rate, of both species remained stable as the volumetric moisture content of the substrate dropped from 25% to 15%, with pronounced decreases in photosynthesis at lower substrate moisture levels. Abelias and hydrangeas wilted when the substrate moisture level dropped to 6.3% and 8.3%, respectively. At wilting, abelias had lower leaf water potential (–3.7 MPa) than hydrangeas (–1.8 MPa). After the plants were watered at the end of the first drying cycle, the photosynthesis of the plants did not recover to pre-stress rates, indicating that the drought stress caused a long-term reduction in photosynthesis. Despite the more severe drought stress in the abelias (both a lower substrate water content and lower water potential at wilting), abelias recovered better from drought than hydrangeas. After the plants were watered at the end of the first drying cycle, the photosynthetic rate of abelias recovered to ≈70%, while the photosynthetic rate of the hydrangeas recovered to only 62% of the pre-stress rate.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169
Author(s):  
Piotr Salachna

New solutions allowing for the shortening of the growing cycle and improvements in plant quality are constantly sought in order to improve the efficiency of bedding plant production under covers. Biodegradable polysaccharides and their derivatives have become increasingly popular in horticulture as plant growth promoters. A greenhouse pot experiment was conducted to evaluate the effects of depolymerized gellan of different molecular weights (MW 56 kDa and 77 kDa) on the growth and physiological parameters of ornamental bedding plants Rudbeckia hirta L., Salvia splendens Sellow ex J.A. Schultes, Scabiosa atropurpurea L., and Tithonia rotundifolia (Mill.) S.F. Blake. The results showed that the application of depolymerized gellan accelerated flowering and stimulated the growth of all assessed species, regardless of MW. The plants treated with depolymerized gellan grew higher and had greater fresh weight of their above-ground parts, higher leaf relative chlorophyll content (SPAD; soil and plant analysis development), and higher stomatal conductance (gs). The use of 56 kDa gellan fraction resulted in the formation of inflorescences with the greatest fresh weight in S. atropurpurea. Leaves of R. hirta treated with this fraction showed the highest values of SPAD and gs. This study demonstrated that gellan derivatives of low MW may be used for the production of innovative plant biostimulants.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 528A-528
Author(s):  
J.E. Barrett ◽  
C.E. Wieland ◽  
T.A. Nell ◽  
D.G. Clark

In some species of bedding plants, rapid hypocotyl elongation during germination makes size control in plug production difficult. Commercial growers often start applying growth regulators as cotyledons are expanding or after the first true-leaves are expanding. Using `Bonanza Spry' marigolds, we evaluated applying paclobutrazol at sowing and after 3 and 6 days. Sprays at 30 mg·L–1 in a volume of 0.2 L·m–2 or 3 mg·L–1 in 0.6 mg·L–1 applied at sowing reduced hypocotyl elongation by 25% and produced more compact plugs. In a second study, plugs of `Double Madness Rose' petunia, `Showstopper Orange' impatiens, `Wizard Rose' coleus, and `Cooler Rose' vinca were grown in 10-cm pots with a growing medium that did not contain pine bark. Uniconazole was sprayed in a volume of 0.2 L·m–2 onto the surface of the medium before planting at concentrations of 25%, 50%, and 100% of the label's recommended concentration for each crop. An additional treatment was uniconazol applied 2 weeks after planting at the label concentration. All early applications reduced final plant size compared to the nonsprayed plants. For impatiens, the early application at 25% of the label concentration produced plants similar to the spray at 2 weeks after planting. For the other crops, the 50% treatment prodcued plants similar to the spray after planting. The early applicaiton of growth regulators offers the industry an additional stradagy to use for controlling the growth of vigorous bedding plant crops.


1997 ◽  
Vol 75 (10) ◽  
pp. 1700-1706 ◽  
Author(s):  
Weixing Tan ◽  
Terence J. Blake

To determine how different mechanisms of drought tolerance contribute to growth rate under drought, this study compared four full-sib black spruce (Picea mariana (Mill.) B.S.P.) families which differed in growth rate when soil water became limiting, stomatal conductance, photosynthesis, and water relations responses to drought. Repeated drought cycles were imposed by withholding soil water in a nursery and physiological responses were measured near the end of the first and third cycle. The most vigorous family under drought had greater osmotic adjustment and maintained higher rates of net photosynthesis during the first cycle of drought and resumed higher rates of photosynthesis sooner upon stress relief, compared with two slow-growing families. Pressure–volume analysis of drought-stressed shoot tissues indicated that the fast-growing family exhibited a larger degree of elastic enhancement (i.e., decrease in bulk modulus of elasticity), which would explain its higher turgor pressure, compared with the two less vigorous families. However, family differences in gas exchange and water relations largely diminished when seedlings were exposed to repeated cycles of drought. Therefore, fast-growing black spruce families under drought may gain selective growth advantage by a better ability to tolerate, rather than postpone, momentary dehydration. Short-term screening trials could be used to detect drought tolerant genotypes in black spruce. Key words: drought, family variation, photosynthesis, Picea mariana, stomatal conductance, water relations.


2001 ◽  
Vol 11 (3) ◽  
pp. 434-437
Author(s):  
Timothy K. Broschat ◽  
Kimberly A. Moore

Salvia (Salvia splendens) `Red Vista' or `Purple Vista,' french marigold (Tagetes patula) `Little Hero Orange,' bell pepper (Capsicum annuum) `Better Bell,' impatiens (Impatiens wallerana) `Accent White,' and wax begonia (Begonia ×semperflorens-cultorum) `Cocktail Vodka' were grown in 0.95-L (1-qt) containers using a 5 pine bark: 4 sedge peat: 1 sand substrate (Expts. 1 and 2) or Pro Mix BX (Expt. 2 only). They were fertilized weekly with 50 mL (1.7 fl oz) of a solution containing 100, 200, or 300 mg·L-1 (ppm) of nitrogen derived from 15N-6.5P-12.5K (1N-1P2O5-1K2O ratio) or 21N-3P-11.7K (3N-1P2O5-2K2O ratio) uncoated prills used in the manufacture of controlled-release fertilizers. Plants grown with Pro Mix BX were generally larger and produced more flowers or fruit than those grown with the pine bark mix. With few exceptions, plant color, root and shoot dry weights, and number of flowers or fruit were highly correlated with fertilization rate, but not with prill type. There appears to be little reason for using the more expensive 1-1-1 ratio prills, since they generally did not improve plant quality and may increase phosphorous runoff from bedding plant nurseries.


2019 ◽  
Vol 144 (3) ◽  
pp. 201-208
Author(s):  
Krishna Nemali ◽  
Marc W. van Iersel

Bedding plants are at increased risk for exposure to drought stress during production because they are grown in small containers. Physiological mechanisms of bedding plants at leaf and cellular scales that regulate whole-plant photosynthesis under drought conditions are not well understood. This information can be useful for screening bedding plant cultivars with improved drought-tolerance and generate guidelines to mitigate drought stress during production. We subjected drought-sensitive salvia (Salvia splendens ‘Bonfire Red’) and drought-tolerant vinca (Catharanthus roseus ‘Cooler Peppermint’) to gradual drought stress inside whole-plant gas exchange chambers. Substrate water content (Θ), whole-plant net photosynthesis (Pn_avg), whole-plant respiration (Rd_avg), and daily carbon gain (DCG) were measured continuously, whereas stomatal conductance (gS) to water, leaf water (ΨL), osmotic (ΨS), and turgor (ΨP) potentials were measured at the start and end of the drought phase. In addition, ΨS was measured before exposure to stress and after thoroughly rehydrating plants. Dark-adapted quantum efficiency (dark-adapted ΦPSII) was measured after rehydrating plants. The results indicated that, at whole-plant scale, vinca continued to uptake water at lower Θ levels than the Θ level that resulted in wilting of salvia. There were no differences in Rd_avg; however, Pn_avg and DCG of salvia decreased at a higher Θ level than that of vinca. This indicated that salvia experienced drought stress at a higher Θ level than did vinca. At the leaf scale, there were no differences in ΨL; however, a more negative ΨS (P = 0.06) and significantly higher ΨP were observed in vinca (compared to salvia) under drought conditions. In addition, ΨS was not different between species before exposure to drought, whereas ΨS of rehydrated leaves after exposure to drought in vinca was significantly lower than that in salvia. Moreover, ΨS of rehydrated leaves after exposure to drought was significantly lower than that observed before exposure to drought in vinca. This indicated osmotic adjustment (OA) in vinca under drought conditions. Dark-adapted ΦPSII was lower in salvia than in vinca after exposure to drought, indicating damage to photosynthetic mechanisms. Our results suggested that increased OA likely helped to maintain higher ΨP under drought conditions and continuation of water uptake at lower Θ in vinca compared to salvia. In addition, healthier photosynthetic mechanisms of vinca (compared to salvia) under drought conditions likely resulted in its higher Pn_avg and DCG at lower Θ. Screening for OA and dark-adapted ΦPSII may be useful for developing drought-tolerant bedding plant cultivars.


HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 321-323 ◽  
Author(s):  
Jeff S. Kuehny ◽  
Aaron Painter ◽  
Patricia C. Branch

Eight bedding plant species were grown from plugs obtained from two sources. The plugs were transplanted into jumbo six packs and sprayed with a solution of chlormequat/daminozide with concentrations of 1000/800, 1250/1250, or 1500/5000 mg·L-1 when new growth was ≈5 cm in height or width. Three different species were grown in the fall (Dianthus chinensis L., `Telstar Mix', Petunia ×hybrida Hort. Vilm.-Andr., `Dreams Red', and Viola ×wittrockiana Gams., `Bingo Blue'), winter [Antirrhinum majus L., `Tahiti Mix', Matthiola incana (L.) R. Br., `Midget Red', and P. × hybrida, `Dreams Mix'], and spring [Catharanthus roseus (L.) G. Don, `Cooler Pink', Salvia splendens F. Sellow ex Roem. & Schult., `Empire Red', and Begonia ×semperflorens-cultorum Hort., `Cocktail Mix']. The treatments significantly reduced finished plant size of all species for each season. There was a significant difference in finish size between sources for Dianthus, Antirrhinum, Matthiola, Catharanthus, Salvia, and Begonia. The efficacy of chlormequat/daminozide also differed for each source of Dianthus, Matthiola, and Begonia, but the treatments minimized the differences in finish size between sources for Petunia and Viola. Chemical names used: (2-chlorethyl) trimethylammonium chloride (chlormequat); (N-dimethylaminosuccinamic acid) (daminozide).


Sign in / Sign up

Export Citation Format

Share Document