scholarly journals A Comparison of Drill and Broadcast Methods for Establishing Cover Crops on Beds

HortScience ◽  
2014 ◽  
Vol 49 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Eric B. Brennan ◽  
Jim E. Leap

Cover crop stands that are sufficiently dense soon after planting are more likely to suppress weeds, scavenge nutrients, and reduce erosion. Small-scale organic vegetable farmers often broadcast cover crop seed to establish cover crops but lack information on the most effective implements to incorporate the seed into the soil. Experiments were conducted with winter- and spring-sown cover crops to compare drilling vs. broadcasting methods for establishing rye (Secale cereale L.) mixed with either purple (Vicia benghalensis L., winter) or common vetch (V. sativa L., spring) on bed tops at a seeding rate of 140 kg·ha−1 in Salinas, CA. Broadcast seed was incorporated with a rototiller, cultivator, or tandem disc. Cover crop stand uniformity was assessed visually, and cover crop emergence over time and seeding depth were measured. Stands were more uniform after drilling or broadcast + rototiller incorporation compared with the other methods. Cover crops emerged sooner and in higher densities after drilling compared with broadcasting. The delayed emergence of broadcast seed was most apparent during the cooler winter experiment, particularly with purple vetch. Most drilled seed emerged from 2-cm depth compared with the broadcast seed that emerged from up to 11-cm depth with the greatest variability after disc or rototiller incorporation. The data indicate that the cultivator and rototiller are preferable implements to incorporate broadcast seed on beds, but that 50% to 100% higher seeding rates for broadcasting than drilling are needed. The practical implications for weed and soil management, and planting costs are discussed.

2021 ◽  
Author(s):  
Jose Alfonso Gomez ◽  
Gema Guzman

<p>Maintenance of ground cover vegetation in olive orchards has been shown to reduce soil and runoff losses as compared to bare soil. However, extrapolation of its impact at hillslope scale under different conditions still challenging for several reasons. One is the limited duration of available experiments, usually shorter than 3 years, which can´t capture the annual variability in precipitation typical of Mediterranean type of climate. A second reason is the small scale in which many experiments are carried out, which do not capture all the relevant erosion processes at hillslope scale. A third reason, hardly discussed, is the use of the runoff plots that limits traffic resulting in conditions that might not be fully representative of actual orchards.</p><p> </p><p>For evaluating the effect of temporary cover crops on water erosion processes in olives at hillslope scale, runoff and soil losses have been monitored from 2008 to 2019 in La Conchuela. This is an olive farm located in Southern Spain, where average annual precipitation is 655 mm, on Typic Haploxerert (clay content > 50%). Six runoff plots (14x24 m) delimited by steel beams on concrete foundation were established in a 13.4 % slope, containing 3 rows of 4 trees. This allows normal farm operations. Since 2008-2009, two soil management systems, conventional tillage (CT) and temporary cover crops (CC), were tested. In the two CT plots ground vegetation was controlled by 2-3chisel ploughing passes during the year. CC in the other four plots consisted of sowing manually in mid Fall a grass or a mix with grasses every 1 to 3 years without disturbing the soil surface, been mowed in early Spring. The aim of this cover crop was to be grown up spontaneously from seed produced the previous year. Weeds along the tree rows are controlled by herbicides in both cases.</p><p>No significant differences were detected (p < 0.05) for the whole period, although CC showed lower runoff and soil losses values. Runoff data ranged from 157.7 ± 61.2 to 144.5 ± 46.4 mm, and soil losses varied from 24.3 ± 9.1 to 16.4 ± 7.0 t·ha<sup>-1</sup> at the CT and CC treatments respectively. The lack of statistical differences can be explained by the large variability recorded in the measurements at the six plots, especially at the CC due to the specific weather and traffic conditions. Our experiment shows how in a crop, olives, subject to intense traffic during the harvesting season (happening in late fall or early winter, rainy season) and in an orchard on heavy soils, maintenance of a good cover crop is challenging in many years. Our results call for caution when extrapolating the benefits of cover crops in olives from the experimental plots to real world conditions. It also highlights the need for improved soil management under these conditions (e.g. controlled traffic, combination with inert mulch, …) to improve soil and water conservation in intensively cultivated olive orchards in heavy soils.</p><p> </p>


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 432-440 ◽  
Author(s):  
Eric B. Brennan ◽  
Richard F. Smith

Strawberry (Fragaria ×ananassa Duch.) production in California uses plastic mulch–covered beds that provide many benefits such as moisture conservation and weed control. Unfortunately, the mulch can also cause environmental problems by increasing runoff and soil erosion and reducing groundwater recharge. Planting cover crops in bare furrows between the plastic cover beds can help minimize these problems. Furrow cover cropping was evaluated during two growing seasons in organic strawberries in Salinas, CA, using a mustard (Sinapis alba L.) cover crop planted at two seeding rates (1× and 3×). Mustard was planted in November or December after strawberry transplanting and it resulted in average densities per meter of furrow of 54 and 162 mustard plants for the 1× and 3× rates, respectively. The mustard was mowed in February before it shaded the strawberry plants. Increasing the seeding rate increased mustard shoot biomass and height, and reduced the concentration of P in the mustard shoots. Compared with furrows with no cover crop, cover-cropped furrows reduced weed biomass by 29% and 40% in the 1× and 3× seeding rates, respectively, although weeds still accounted for at least 28% of the furrow biomass in the cover-cropped furrows. These results show that growing mustard cover crops in furrows without irrigating the furrows worked well even during years with relatively minimal precipitation. We conclude that 1) mustard densities of ≈150 plants/m furrow will likely provide the most benefits due to greater biomass production, N scavenging, and weed suppression; 2) mowing was an effective way to kill the mustard; and 3) high seeding rates of mustard alone are insufficient to provide adequate weed suppression in strawberry furrows.


2001 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Mary C. Akemo ◽  
Mark A. Bennett ◽  
Emilie E. Regnier

Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha-1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha-1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macronutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 453A-453
Author(s):  
M. Rangappa ◽  
H.L. Bhardwaj

Cover crops offer an excellent source of nutritional requirements for production of vegetables in sustainable agricultural system. By using this concept, field experiments were conducted in l998 at three locations in Virginia; Petersburg, James City, and King and William County, and five cover crop treatments; Hairy Vetch (HV), Crimson Clover (CC), HV+Rye, CC+Rye, and a conventional bare-ground control were used for their potential support of nutritional requirements for production of a seedless watermelon crop. The results indicated that the yield levels of seedless watermelon following cover crop treatments had significantly higher number of fruits per acre and the crimson clover treatment had higher fruit size in one of the sites (King William County) as compared to the other four treatments and two sites suggesting that cover crop/crops alone have the potential to support nutritional requirements for seedless watermelon to sustain production, thus becoming a viable and profitable alternative to using inorganic nitrogen source. The effects of cover crops on chemical composition of seedless watermelon were generally not significant. The results also indicated that watermelons produced using sustainable crop production methods are comparable to those produced using conventional methods. Our studies support using seedless watermelon as a viable alternative and high-value cash crop for Virginia farmers' especially tobacco growers, other small-scale producers, and limited resource farmers.


HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 843-848 ◽  
Author(s):  
Mary C. Akemo ◽  
Mark A. Bennett ◽  
Emilie E. Regnier

Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha–1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha–1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macro-nutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Richard G. Smith ◽  
Lesley W. Atwood ◽  
Fredric W. Pollnac ◽  
Nicholas D. Warren

Cover crops represent a potentially important biological filter during weed community assembly in agroecosystems. This filtering could be considered directional if different cover-crop species result in weed communities with predictably different species composition. We examined the following four questions related to the potential filtering effects of cover crops in a field experiment involving five cover crops grown in monoculture and mixture: (1) Do cover crops differ in their effect on weed community composition? (2) Is competition more intense between cover crops and weeds that are in the same family or functional group? (3) Is competition more intense across weed functional types in a cover-crop mixture compared with cover crops grown in monocultures? (4) Within a cover-crop mixture, is a higher seeding rate associated with more effective biotic filtering of the weed community? We found some evidence that cover crops differentially filtered weed communities and that at least some of these filtering effects were due to differential biomass production across cover-crop species. Monocultures of buckwheat and sorghum–sudangrass reduced the number of weed species relative to the no-cover-crop control by an average of 36 and 59% (buckwheat) and 25 and 40% (sorghum–sudangrass) in 2011 and 2012, respectively. We found little evidence that competition intensity was dependent upon the family or functional classification of the cover crop or weeds, or that cover-crop mixtures were stronger assembly filters than the most effective monocultures. Although our results do not suggest that annual cover crops exert strong directional filtering during weed community assembly, our methodological framework for detecting such effects could be applied to similar future studies that incorporate a greater number of cover-crop species and are conducted under a greater range of cover-cropping conditions.


Author(s):  
Edleusa Pereira Seidel ◽  
João Henrique Silva Caetano ◽  
Arthur Schafer Karpinski ◽  
Willian Dos Reis

Soil quality maintenance in a no-tillage system (NTS) depends on cover crops. They are essential for crop rotation, affect several soil attributes, and contribute to phytosanitary control. However, cover crop efficacy is influenced by their root function and the presence of plant straw on soil surfaces. The objective of this study was to compare various winter cover crops in terms of their effects on dry mass yield, straw persistence after 40 d, weed incidence, and soil aggregate stability. The soil tested was an Oxisol Ustox Hapludox in Western Paraná State, southern Brazil. A randomized block design was used with four replicates and six treatments (fallow, black oat, fodder turnip, field pea, common vetch, and fodder turnip + black oat). Cover crops were managed 88 d after sowing. Dry mass (DM) and residual dry mass (RDM) were measured at 20 d and 40 d after harvest. Aggregate stability and weed type and density were evaluated after 40 d of management (DAM). The results showed that black oat obtained the lowest decomposition; therefore, a potential species to be used in the system of crop rotation in the no-tillage. The consorted of fodder turnip and black oat provided relatively higher dry mass yields and improved soil aggregation. Cover crops reduced the incidence of weeds, being important for no-till sustainability.


2010 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell ◽  
Kathryne L. Everts ◽  
Xin-Gen Zhou

Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum races 0, 1, 2, or 3, is found throughout the eastern United States. Most seedless (triploid) watermelon cultivars are susceptible to all races. In previous studies in Maryland, winter cover crops of hairy vetch (Vicia villosa) reduced Fusarium wilt. The objectives of this study were to compare ‘Cahaba White’ hybrid common vetch (V. sativa × V. cordata) to hairy vetch for suppression of Fusarium wilt in South Carolina and Maryland. Cover crops of the two vetches and rye (the control) were seeded in fall 2006 and 2007 in fields naturally infested with a mixture of races 1 and 2 in South Carolina and Maryland. In the spring after incorporating the cover crop biomass, seedless watermelons cv. Sugar Heart (susceptible) or Revolution (moderately resistant to race 1) were transplanted into subplots within each cover crop whole plot. ‘Cahaba White’ vetch was as effective as hairy vetch in reducing incidence of Fusarium wilt. Both vetch varieties reduced wilt incidence by approximately the same degree with the susceptible as with the moderately resistant cultivar. In general, the moderately resistant cultivar yielded more fruit (by weight) than the susceptible cultivar. Accepted for publication 23 August 2010. Published 14 September 2010.


2016 ◽  
Vol 32 (5) ◽  
pp. 463-473 ◽  
Author(s):  
Rick A. Boydston ◽  
Martin M. Williams

AbstractFall-planted cover crops offer many benefits including weed suppressive residues in spring sown crops when controlled and left on the soil surface. However, vegetable growers have been slow to adopt direct-seeding (no-till) into cover crop residues. Field studies were conducted in 2009 and 2010 near Paterson, WA and Urbana, IL to evaluate mortality of rye and common vetch (WA) hairy vetch (IL) cover crops, weed density and biomass, and snap bean growth and yield following four cover crop control methods utilizing a roller–crimper. Rye had higher mortality than common and hairy vetch by roller-crimping, and carfentrazone applied after roller crimping only slightly increased vetch mortality. Heavy residues of rye and escaped vetch were difficult to plant into, often resulting in lower snap bean populations. Rye and hairy vetch residues suppressed final weed biomass, while common vetch reduced weed biomass 1 of 2 years. Escaped plants of both vetch species became a weed. Snap bean yields were inconsistent and often lower following cover crops compared with a fallow treatment. Being able to completely control cover crops and to plant, manage escaped weeds and mechanically harvest in the presence of heavy residues are challenges that deter vegetable growers from readily adopting these systems.


2020 ◽  
Vol 34 (4) ◽  
pp. 534-539
Author(s):  
Katilyn J. Price ◽  
Xiao Li ◽  
Andrew Price

AbstractCover crops can provide many benefits to peanut and cotton crops planted in rotation including suppressing weeds, conserving soil moisture after termination, increasing soil organic matter, and reducing soil erosion. However, herbicide carryover can affect cover crop establishment. The objective of this study was to investigate the responses of 6 cover crops (daikon radish, cereal rye, oat, crimson clover, winter wheat, and common vetch) to 12 soil residual herbicides. A multiyear (2016–2018), multilocation study was conducted in Macon and Henry counties, Alabama. Herbicide treatments included S-metolachlor, acetochlor, pyroxasulfone, diclosulam, imazapic, chlorimuron-ethyl, bentazon plus acifluorfen, pyrithiobac-sodium, trifloxysulfuron-sodium, diuron, prometryn, and flumioxazin, each applied at 10% of the full-labeled rate. At 42 to 52 and 145 to 149 d after planting (DAP), cover crop plant heights and stand counts were evaluated, as was biomass at 145 to 149 DAP. Treatments varied from year to year but not locations. In 2016, significant stand reductions (P ≤ 0.10) of 36% to 43% in rye and 44% to 75% in wheat were observed at 48 to 52 DAP for S-metolachlor, acetochlor, pyroxasulfone, imazapic, and bentazon plus acifluorfen compared with nontreated plants. Vetch had stand reductions ranging from 14% to 80% for all treatments 50 DAP except for plants treated with prometryn. S-metolachlor, pyroxasulfone, and acetochlor reduced stands of rye, wheat, and vetch more than any other herbicides. In 2017, at 147 to 149 DAP, clover stands were reduced by 29% with diclosulam and by 38% with trifloxysulfuron-sodium. Similarly, radish stands were reduced by 64% with diclosulam treatment. No significant biomass reductions were observed for any cover crop species either year. Oat showed the most tolerance with no treatments reducing any growth parameters either year. Although initial injury and stunting may occur, biomass at termination of cover crops were not affected by herbicide residues evaluated in this study.


Sign in / Sign up

Export Citation Format

Share Document