scholarly journals Evaluation of Conservation Tillage and Cover Crop Systems for Organic Processing Tomato Production

2004 ◽  
Vol 14 (2) ◽  
pp. 243-250 ◽  
Author(s):  
N.M. Madden ◽  
J.P. Mitchell ◽  
W.T. Lanini ◽  
M.D. Cahn ◽  
E.V. Herrero ◽  
...  

Field experiments were conducted in 2000 and 2001 in Meridian, Calif. to evaluate the effects of cover crop mixtures and reduced tillage on yield, soil nitrogen (N), weed growth, and soil moisture content in organic processing tomato (Lycopersicum esculentum) production. The trial was set up as a randomized complete-block design with eight treatments consisting of a 2 × 3 (cover crop × tillage) factorial design, a fallow control (F) and a single strip-till (ST) treatment. Cover crop mixtures were either legumes (L), common vetch (Vicia sativa), field pea (Pisum sativum) and bell bean (Vicia faba), or those legumes with grasses (GL), annual ryegrass/triticale (Lolium multiflorum/xTriticosecale) in 2000; cereal rye (Secale cereale)/triticale in 2001. Tillage treatments included an incorporation of the cover crop at planting (IP), a delayed incorporation (DI) (17 to 19 days after planting), and no-till (NT). Due to regrowth of the annual ryegrass in 2000, tomato fruit yields in 2000 were reduced by 50% to 97% within all GL treatments. However, regrowth of the cover crop was not a problem in 2001 and yields were not different among treatments. Total percent weed cover was 1.6 to 12.5 times higher in NT than IP treatments in 2000 and 2.4 to 7.4 times higher in 2001 as weed pressure was mainly affected by tillage practices and less by cover crop type. In 2000, available soil N was 1.7 to 9.4 times higher in L than GL treatments and was significantly influenced by tillage, but there were no treatment effects in 2001 due to a 60% reduction in weed pressure and minimal or no cover crop regrowth. Soil moisture content did not differ between treatments in either year. These results demonstrate the importance of appropriate selection and termination of cover crops for their successful adoption in organic conservation tillage systems.

2020 ◽  
Vol 13 ◽  
pp. 117862212094806 ◽  
Author(s):  
MJ Marques ◽  
M Ruiz-Colmenero ◽  
R Bienes ◽  
A García-Díaz ◽  
B Sastre

The study of alternative soil managements to tillage, based on the evidence of climate change in the Mediterranean basin, is of great importance. Summer and autumn are critical seasons for soil degradation due to the high-intensity, short-duration storms. Vineyards are vulnerable, especially on steep slopes. The particular effects of storms over the years under different soil conditions due to different management practices are not frequently addressed in the literature. The aim of this study was to examine the differences between runoff and soil moisture patterns influenced by 2 treatments: traditional tillage (Till) and a permanent cover crop. A shallow-rooted grass species Brachypodium distachyon (L.) P. Beauv. with considerable density coverage was selected as cover crop. This annual species was seeded once in the first year and then allowed to self-seed the following years. Tillage was performed at least twice in spring to a 10- to 15-cm depth and once in late autumn at a depth of 20 to 35 cm. Rainfall simulation experiments were performed, 1 year after treatments, using high-intensity rainfall on closed plots of 2 m2, located in the middle strips of the vineyard with different treatments. The effects of simulated rainfall experiments were determined in 3 different moments of the growth cycle of cultivar: (1) in summer with dry soils, (2) in early autumn with moderate soil moisture, and (3) in autumn with wet soils. During the 2-year trial, the soil moisture level in the soil upper layer (0-10 cm) was higher for Till treatment (14.1% ± 2.4%) compared with that for cover crop treatment (12.3% ± 2.0%). However, soil moisture values were more similar between treatments at 35 cm depth (12% ± 1%), with the exception of spring and autumn; in spring, water consumption in the cover crop treatment was the highest, and the moisture level at 35 cm depth was reduced (12%) compared with that for Till treatment (13%). In autumn, in cover crop treatment, higher water infiltration rate in soils led to higher soil moisture content at 35 cm (11%) compared with that of Till treatment (10%). The effects of simulated rainfall experiments on runoff and infiltration under different soil conditions and management practices vary seasonally. Runoff was significantly higher in summer for cover crop treatment (11%) as compared with that for Till management (1%), but significantly lower (3%) with wetter soils than for Till treatment (22%) in autumn. Thus, the simulation experiments with wet soils using cover crops produced higher infiltration rates and, consequently, the higher soil moisture content in the following days. The difference between seasons is attributed to the greater porosity of soil under Till treatment in summer, which resulted from the shallow plowing (10-15 cm depth), carried out to reduce moisture competition between weeds. The effect of traditional spring plowing was short-lived. The infiltration of water increased by cover crop treatment as compared with tillage in autumn both before and after ripping. Management practices did not influence wine parameters, as no significant differences were found between wine organoleptic characteristics in the duo-trio wine tastings, similarly, no differences were found for alcoholic degree, acidity, reduced sugars, and pH; however, a trend for a positive increase in polyphenol contents was noticed. Therefore, properly managed to avoid water shortages, cover crops can be recommended for soil protection in semi-arid environments.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1596-1602 ◽  
Author(s):  
Erin R. Haramoto ◽  
Daniel C. Brainard

Strip tillage (ST) is a form of conservation tillage in which disturbance is limited to the crop rows while the rest of the soil remains undisturbed. Compared with conventional, full-width tillage (CT), ST may reduce tillage costs, protect soil from erosion, and benefit cool-season crops including cabbage (Brassica oleracea L. var. ‘capitata’) by improving water retention, reducing soil temperatures, and improving the synchrony of inorganic nitrogen (IN) supply with crop demand. Field experiments were conducted in 2010 and 2011 in central Michigan to assess the effects of tillage (CT vs. ST) and a preceding cover crop (none vs. oats, Avena sativa L. var. ‘Ida’) on soil temperature, moisture, N dynamics, and yields in transplanted cabbage. Oats were sown in April and terminated 2 to 3 weeks before cabbage transplanting in early July. In-row (IR) soil moisture, temperature, and IN content were assessed from transplanting until cabbage harvest in October. In 2010, IR soil moisture was higher season-long in ST compared with CT and in oat compared with non-oat treatments, but these effects were not detected in 2011. Tillage and oat residue had little or no effect on IR soil temperature. Shortly after tillage in both years, soil IN availability was greater in CT treatments without oats compared with both ST treatments and CT with oats. However, these differences dissipated after 3 to 4 weeks, and hypothesized improvements in N release patterns under ST were not observed. No differences in cabbage marketable yield were detected in either year, although the proportion of plants that produced a marketable head was lower in cover-cropped plots in 2010. These findings suggest that soil conservation and input savings potentially associated with ST production systems may be attained without a yield penalty. More research is needed to understand and optimize cover crop management in ST systems to realize potential benefits in N use efficiency, moisture retention, and soil temperature moderation.


2017 ◽  
Vol 31 (4) ◽  
pp. 514-522 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as a component of Midwest corn and soybean production systems has led to a greater need to understand the most effective herbicide treatments for cover crop termination prior to planting corn or soybean. Previous research has shown that certain cover crop species can significantly reduce subsequent cash crop yields if not completely terminated. Two field experiments were conducted in 2013, 2014, and 2015 to determine the most effective herbicide program for the termination of winter wheat, cereal rye, crimson clover, Austrian winter pea, annual ryegrass, and hairy vetch; and cover crops were terminated in early April or early May. Visual control and above ground biomass reduction was determined 28 d after application (DAA). Control of grass cover crop species was often best with glyphosate alone or combined with 2,4-D, dicamba, or saflufenacil. The most consistent control of broadleaf cover crops occurred following treatment with glyphosate +2,4-D, dicamba, or saflufenacil. In general, control of cover crops was higher with early April applications compared to early May. In a separate study, control of 15-, 25-, and 75-cm tall annual ryegrass was highest with glyphosate at 2.8 kg ha−1or glyphosate at 1.4 kg ha−1plus clethodim at 0.136 kgha−1. Paraquat- or glufosinate-containing treatments did not provide adequate annual ryegrass control. For practitioners who desire higher levels of cover crop biomass, these results indicate that adequate levels of cover crop control can still be achieved in the late spring with certain herbicide treatments. But it is important to consider cover crop termination well in advance to ensure the most effective herbicide or herbicide combinations are used and the products are applied at the appropriate stage.


2005 ◽  
Vol 19 (3) ◽  
pp. 731-736 ◽  
Author(s):  
D. Wayne Reeves ◽  
Andrew J. Price ◽  
Michael G. Patterson

The increased use of conservation tillage in cotton production requires that information be developed on the role of cover crops in weed control. Field experiments were conducted from fall 1994 through fall 1997 in Alabama to evaluate three winter cereal cover crops in a high-residue, conservation-tillage, nontransgenic cotton production system. Black oat, rye, and wheat were evaluated for their weed-suppressive characteristics compared to a winter fallow system. Three herbicide systems were used: no herbicide, preemergence (PRE) herbicides alone, and PRE plus postemergence (POST) herbicides. The PRE system consisted of pendimethalin at 1.12 kg ai/ha plus fluometuron at 1.7 kg ai/ha. The PRE plus POST system contained an additional application of fluometuron at 1.12 kg/ha plus DSMA at 1.7 kg ai/ha early POST directed (PDS) and lactofen at 0.2 kg ai/ha plus cyanazine at 0.84 kg ai/ha late PDS. No cover crop was effective in controlling weeds without a herbicide. However, when black oat or rye was used with PRE herbicides, weed control was similar to the PRE plus POST system. Rye and black oat provided more effective weed control than wheat in conservation-tillage cotton. The winter fallow, PRE plus POST input system yielded significantly less cotton in 2 of 3 yr compared to systems that included a winter cover crop. Use of black oat or rye cover crops has the potential to increase cotton productivity and reduce herbicide inputs for nontransgenic cotton grown in the Southeast.


1971 ◽  
Vol 7 (4) ◽  
pp. 337-343
Author(s):  
D. Hopkinson

SUMMARYThe effect of covers of controlled volunteer vegetation, Pueraria phaseoloides, and clean weeding on the soil moisture content and on the succulence of sisal leaves was studied. The surface soil tended to dry out further when exposed by clean weeding, but moisture in the profile as a whole was not much depleted. The plant covers dried soils to at least 300 cm. in dry periods. Although sisal leaves had a slightly higher dry matter content in dry weather there was no evidence of competition for water between the plant covers and the sisal.


2012 ◽  
Vol 26 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Andrew J. Price ◽  
Kip S. Balkcom ◽  
Leah M. Duzy ◽  
Jessica A. Kelton

Conservation agriculture (CA) practices are threatened by glyphosate-resistant Palmer amaranth. Integrated control practices including PRE herbicides and high-residue CA systems can decreaseAmaranthusemergence. Field experiments were conducted from autumn 2006 through crop harvest in 2009 at two sites in Alabama to evaluate the effect of integrated weed management practices onAmaranthuspopulation density and biomass, cotton yield, and economics in glyphosate-resistant cotton. Horizontal strips included four CA systems with three cereal rye cover crop seeding dates and a winter fallow (WF) CA system compared to a conventional tillage (CT) system. Additionally, vertical strips of four herbicide regimes consisted of: broadcast, banded, or no PRE applications ofS-metolachlor (1.12 kg ai ha−1) followed by (fb) glyphosate (1.12 kg ae ha−1) applied POST fb layby applications of diuron (1.12 kg ai ha−1) plus MSMA (2.24 kg ai ha−1) or the LAYBY application alone. Early-seasonAmaranthusdensity was reduced in high-residue CA in comparison to the CA WF systems in 2 of 3 yr.Amaranthusdensities in herbicide treatments that included a broadcast PRE application were lower at three of five sampling dates compared to banding early-season PRE applications; however, the differences were not significant during the late season and cotton yields were not affected by PRE placement. High-residue conservation tillage yields were 577 to 899 kg ha−1more than CT, except at one site in 1 yr when CT treatment yields were higher. CA utilizing high-residue cover crops increased net returns over CT by $100 ha−1or more 2 out of 3 yr at both locations. High-residue cover crop integration into a CA system reducedAmaranthusdensity and increased yield over WF systems; the inclusion of a broadcast PRE application can increase early-seasonAmaranthuscontrol and might provide additional control when glyphosate-resistantAmaranthuspopulations are present.


2006 ◽  
Vol 21 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Andrew J. Price ◽  
D. Wayne Reeves ◽  
Michael G. Patterson

Information is needed on the role of cover crops as a weed control alternative due to the high adoption of conservation tillage in soybean [Glycine max (L.) Merr.] production. Field experiments were conducted from fall 1994 through fall 1997 in Alabama to evaluate three winter cereal cover crops in a high-residue conservation-tillage, soybean production system. Black oat (Avena strigosa Schreb.), rye (Secale cereale L.), and wheat (Triticum aestivum L.) were evaluated for their weed-suppressive characteristics compared to a winter fallow system. Three herbicide systems were utilized: no herbicide, a mixture of two pre-emergence (PRE) herbicides, or PRE plus post-emergence (POST) herbicides. The PRE system contained pendimethalin plus metribuzin. The PRE plus POST system contained pendimethalin plus a prepackage of metribuzin and chlorimuron ethyl applied PRE, followed by an additional chlorimuron ethyl POST application. No cover crop was effective in controlling weeds without a herbicide. However, when black oat or rye was utilized with only PRE herbicides, weed control was similar to the PRE plus POST input system. Thus, herbicide reductions may be attained by utilizing cover crops that provide weed suppression. Rye and black oat provided more effective weed control in the PRE only herbicide input system than wheat in conservation-tillage soybean. The winter fallow, PRE plus POST herbicide input system yielded significantly less soybean one out of three years when compared to systems that included a winter cover crop.


2011 ◽  
Vol 59 (4) ◽  
pp. 349-359
Author(s):  
P. Földesi ◽  
C. Gyuricza

Various forms of physical soil degradation, including soil compaction, have been widely investigated both in Hungary and abroad. Soil compaction is a world-scale problem, which may be triggered by both natural and artificial factors and may adversely influence the effectiveness of crop production. In the long run this unfavourable change in the physical condition of the soil may result in extra expenses, higher energy consumption and excessive environmental damage. The effect of conventional tillage on the physical condition of the soil was assessed on six farms for three years in the framework of field experiments. In this study the physical condition of the soil was examined in terms of soil penetration resistance and moisture content. Significant differences between the experiments were revealed when penetration resistance (PR) was examinated at a depth of 20–30 cm, but not at other depths. In 2004 the mean PR values exceeded 3 MPa in experiments A, B and E. In 2005 significant differences were observed between the experiments at a depth of 30–40 cm, but no adverse compaction was detected at any depth in any of the experiments. In 2006 significant differences were observed between the experiments at depths of 0–10 cm and 10–20 cm, though even in that year no adverse soil compaction was detected. In the first year significant differences in soil moisture content were revealed at depths of 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm, and in 2005 at depths of 20–30 cm and 30–40 cm. In 2006 no significant differences were found between the experiments at any depth. The highest soil moisture contents were recorded in all the experiments at a depth of 30–40 cm. All in all, the results of both penetration resistance and moisture content were indicative of favourable soil conditions. During the period investigated adversely compact layers that would hamper moisture transport were not found in any of the experiments.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 397-401 ◽  
Author(s):  
Melinda L. Hoffman ◽  
Jack W. Buxton ◽  
Leslie A. Weston

In greenhouse studies, overhead watering or subsurface irrigating soil can cause fluctuating moisture content, as can treatments such as surface application of residue used in cover crop research. This paper introduces a method of capillary mat subirrigation that maintained soil moisture at about field capacity for 16 d while no moisture could be detected after 6 d in soil placed under similar conditions that was not irrigated. In another study, subirrigation eliminated differences in soil moisture due to the presence of surface-applied residue and moisture supplied by hand watering from overhead was apparently removed from subirrigated treatments, which never differed in soil moisture content.


2012 ◽  
Vol 58 (No. 4) ◽  
pp. 161-166 ◽  
Author(s):  
J.Y. Shen ◽  
D.D. Zhao ◽  
H.F. Han ◽  
X.B. Zhou ◽  
Q.Q. Li

To develop rainfed agriculture in northern China, we conducted field experiments with three straw mulching rates (0, 6, and 12 t/ha) on two plant types (a compact type, Chaoshi1, and a flat type, Danyu86) during the summer maize-growing season in 2009 and 2010 to study soil moisture content, evapotranspiration, grain yield, and water-use efficiency (WUE). The results indicated that straw mulching could significantly (LSD, P &lt; 0.05) improve soil moisture content at a depth of 20&ndash;80 cm below the ground surface during the anthesis-silking stage; however, at maturity, straw mulching decreased the soil moisture content at a depth of 0&ndash;60 cm below the ground surface. In 2009, straw mulching at the rate of 12 t/ha significantly (LSD, P &lt; 0.05) increased the evapotranspiration in Chaoshi1 and Danyu86. In 2010, straw mulching at the rate of 6 t/ha significantly (LSD,<br />P &lt; 0.05) increased evapotranspiration in Danyu86 alone. The grain yields of Danyu86 in 2009 and Chaoshi1 in 2010 were significantly (LSD, P &lt; 0.05) higher with straw mulching at the rate of 12 t/ha than on the application of other treatments. Irrespective of whether precipitation was concentrated during the beginning or the latter half of the summer maize growing stage, straw mulching increased the WUE of Chaoshi1, but not of Danyu86. These results indicated that under rainfed conditions in northern China, straw mulching could increase the grain yield and WUE of compact-type maize. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document