scholarly journals A Computer-controlled Drip Irrigation System for Container Plant Production

1992 ◽  
Vol 2 (3) ◽  
pp. 402-407
Author(s):  
Rico A. González ◽  
Daniel K. Struve ◽  
Larry C. Brown

An irrigation control system has been developed and used to estimate evapotranspiration of contamer-grown plants by monitoring randomly selected plants within a container block and watering on an “as needed” basis. Sensor reliability and operational ease allows application of the system in a wide variety of field conditions. First-year tests, using red oak (Quercus rubra L.) seedlings, showed a reduction of 95% or better in both total irrigation and leachate rates with the computer-controlled treatment relative to a manually controlled, drip irrigation treatment without reducing plant growth.

HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Harvey J. Lang ◽  
Timothy R. Pannkuk

New Guinea impatiens `Barbados' (Impatiens ×hawkeri) were fertilized with solutions containing N at 6, 12, or 18 mmol·L-1 delivered from a drip irrigation system with either minimum leaching or standard leaching (0.3 to 0.4 leaching fraction). Irrigation was monitored and controlled by computers using microtensiometers placed in representative pots of each treatment. In two separate experiments, growth index, fresh mass, and dry mass were dependent upon both fertilizer concentration and irrigation treatment. Maximum growth overall was achieved at 12 mmol·L-1 N regardless of irrigation treatment; however, standard-leached plants receiving N at both 6 and 18 mmol·L-1 produced larger plants than did similarly fertilized minimum-leached plants. Leaf scorch, spotting, or marginal necrosis did not occur in any of the treatments. Leaf N, P, and K concentrations were highest in plants treated with N at 18 mmol·L-1, but Ca, Mg, and several micronutrients were highest in plants at 6 mmol·L-1 N. At the end of the cropping period for both experiments, growing medium electrical conductivity (EC) in the uppermost one-third layer of the pot was two to four times as high as that in the bottom two-thirds (root zone) layer. Root-zone EC ranged from 0.6 to 4.0 dS·m-1 and increased as fertilizer concentration increased. Standard leaching had little effect in reducing root-zone EC except in plants fertilized with N at 18 mmol·L-1. All plants continued to perform well and flower after 4 weeks in a simulated interior environment. Minimum-leach drip irrigation used ≈35% less solution than did standard irrigation with leaching, and eliminated N runoff.


2019 ◽  
Vol 8 (4) ◽  
pp. 8077-8082

This paper is about an automatic irrigation control system which is cost effective and can be used for irrigation by a farmer. Today’s industrial automation and controlling of machine is high in cost and not suitable for a farming field. So, here we design a smart drip irrigation technology with effective control system in low cost. The voltage monitoring unit informs the farmer about the power supply conditions on the field. The aim of this study, is to control the motor automatically, and decide the direction of the water flow through valves, based on the inputs from the farmer and also with the collective inputs from the sensors, which finally notify instantly about the happenings and conditions of the field. It operates under low hardware cost by distributing irrigation to crops by elevation change and gravity. The soil moisture and amount of flow of water in each sector are major consideration to design a fail-safe system for a variety of crops planted at a time.


2017 ◽  
Vol 2 (3) ◽  
pp. 294-307
Author(s):  
Khairunnisak Khairunnisak ◽  
Devianti Devianti ◽  
Mustafril Mustafril

Abstrak. Pemberian air irigasi secara berlebihan yang tidak sesuai dengan kebutuhan air tanaman akan mempengaruhi pertumbuhan dan produksi tanaman. Salah satu model irigasi yang memungkinkan untuk mengatur jumlah air sesuai dengan kebutuhan tanaman adalah sistem irigasi tetes. Penjadwalan irigasi secara otomatis sangat mendukung disaat cuaca yang susah diprediksi akibat adanya perubahan iklim global. Tujuan penelitian ini adalah untuk menguji kinerja mikrokontroler pada sistem irigasi tetes yang mampu bekerja secara otomatis berdasarkan perubahan kadar air tanah pada tanaman pakcoy. Penelitian  ini dilakukan di desa Lambhuk, Kecamatan Ulee Kareng, Kota Banda Aceh dengan ketinggian lahan 3,8 m di atas permukaan laut dengan ordo tanah regosol. Metode penilitian yang digunakan adalah tahap persiapan yaitu pengambilan sampel tanah untuk dianalisis di laboratorium, pembuatan jaringan sistem irigasi tetes, persemaian benih pakcoy, persiapan media tanam sebanyak 8 pot tanam, pengkalibrasian sensor kelembaban tanah, persiapan bibit pakcoy serta penanaman, dan pemasangan sistem kontrol irigasi tetes otomatis. Tahap pengamatan yaitu diukur tinggi dan jumlah helai daun pakcoy, dan ditimbang bobot segar pakcoy. Hasil penelitian menunjukkan bahwa sistem kontrol irigasi tetes otomatis dapat memenuhi kebutuhan air tanaman pakcoy berdasarkan penentuan kadar air tanah pada keadaan air tersedia, dengan koefisien determinasi (R2) sebesar 0,687. Kinerja alat penyiraman otomatis dengan menggunakan mikrokontroler dapat berfungsi dengan baik dalam memberikan air ke tanaman sesuai dengan yang diinginkan, hal ini dapat dilihat dari kemampuan alat merespon perubahan kadar air tanah menyebabkan katup terbuka dan tertutup sesuai dengan setpoint yang telah ditentukan. Terdapat hubungan yang erat antara perubahan kadar air tanah terhadap pertumbuhan pakcoy dengan koefisien determinasi (R2) sebesar 0,92 dan 0,799, dan terdapat hubungan yang erat antara pemberian air dengan sistem irigasi tetes otomatis terhadap pertumbuhan pakcoy dengan koefisien determinasi (R2) sebesar 0,778 dan 0,696. Sistem irigasi tetes otomatis dapat mengurangi pemborosan air irigasi.Study of Application of Automatic Watering Equipment with Drip Irrigation System Based on Changes in Groundwater Level on Pakcoy (Brassica chinensis L.Abstract. Excessive administration of irrigation water that is inconsistent with crop water requirements will affect plant growth and production. One of the irrigation models that allows to regulate the amount of water in accordance with the needs of the plant is the drip irrigation system. Irrigation scheduling automatically is very supportive when the weather is difficult to predict due to global climate change. The purpose of this research is to test the performance of microcontroller in drip irrigation system that can work automatically based on changes in soil moisture content in pakcoy plant. This research was conducted in Lambhuk village, Ulee Kareng sub-district, Banda Aceh city with land height 3,8 m above sea level with regosol land order. The research method used is the preparation phase of soil sampling to be analyzed in the laboratory, the making of drip irrigation system network, the seedbed of pakcoy seed, the preparation of planting media of 8 planting pots, the calibration of soil moisture sensor, the preparation of pakcoy seeds as well as the planting and installation of the irrigation control system Auto drops. Observation phase is measured height and number of leaf of pakcoy leaf, and weighs fresh weight of pakcoy. The result of research indicates that automatic drip irrigation control system can fulfill the water requirement of pakcoy plant based on the determination of ground water level in available water condition, with coefficient of determination (R2) equal to 0,687 . The use of automatic drip irrigation control system has an effect on the growth and production of pakcoy. There is a close relationship between soil moisture change to the growth of pakcoy with coefficient of determination (R2) of 0.92 and 0.799, and there is a close relationship between water delivery with automatic drip irrigation system to the growth of pakcoy with coefficient of determination (R2) of 0.778 and 0.696.


1969 ◽  
Vol 72 (1) ◽  
pp. 31-40
Author(s):  
Tillak Persaud ◽  
Megh R. Goyal ◽  
Philippe Bellerive

This report presents the cost of a drip irrigation system for vegetable farming in Puerto Rico. The total initial cost of establishing an automatic drip irrigation system on a 4.36 hectare farm was $28,639.03, 10.79% of which was for pump house facilities; 3.1% for filter with accessories; 2.95% for chemigation facilities; 81.38% for in field materials; and 1.75% for installation. The first year cost per hectare was $1,976.72, which included depreciation, interest, maintenance and installation. A computer program was developed to calculate these costs.


1998 ◽  
Vol 34 (4) ◽  
pp. 439-448 ◽  
Author(s):  
R. GOENAGA ◽  
H. IRIZARRY

A three-year study was conducted on an Ultisol to determine the water requirement, yield and fruit-quality traits of three ratoon crops (R1, R2, R3) of ‘Grande Naine’ banana (Musa acuminata Colla, AAA group) subjected to four levels of irrigation. The irrigation treatments were based on Class A pan factors ranging from 0.0 (rainfed) to 1.0 in increments of 0.25. When needed, drip irrigation was supplied three times a week on alternate days. Results showed significant (p < 0.01) irrigation treatment and crop effects on bunch weight, yield, bunch mean hand weight, weight and fruit diameter of the third and last hands, and length of fruits of the third hand. Highest marketable yield (47.9 t ha−1) was obtained from the R2 crop with water application according to a pan factor of 1.0. It was concluded that irrigating the crop according to a pan factor of 1.0 was sufficient to justify the investment of a drip-irrigation system for a farm in the mountain region.


2014 ◽  
Vol 539 ◽  
pp. 592-595
Author(s):  
Hua Li ◽  
Yan Wang

This paper analyzes the control requirements of drip irrigation system, designed automatic drip irrigation control system with IPC and PLC as control core, using WinCC as the man-machine communication window, combined with frequency, field bus and sensor technology. This paper focuses on the system hardware design, system control software and system monitoring software design. Through the field bus, the central management computer decide reasonable irrigation decision according to the soil moisture information, crop water requirement characteristics and predetermined irrigation scheme, and then issued a directive to the solenoid valve scattered, automatic carry out proper, required precision irrigation control. The practical application shows that: the system has stable working performance, friendly interface, improve labor productivity. The system can be expanded easily in terms of structure and function, can satisfy the application of different scale, demand, cost, have certain application prospect.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 177 ◽  
Author(s):  
Ali Montazar ◽  
Michael Cahn ◽  
Alexander Putman

The main objective of this study was to explore the viability of drip irrigation for organic spinach production and the management of spinach downy mildew disease in California. The experiment was conducted over two crop seasons at the University of California Desert Research and Extension Center located in the low desert of California. Various combinations of dripline spacings and installation depths were assessed and compared with sprinkler irrigation as control treatment. Comprehensive data collection was carried out to fully understand the differences between the irrigation treatments. Statistical analysis indicated very strong evidence for an overall effect of the irrigation system on spinach fresh yields, while the number of driplines in bed had a significant impact on the shoot biomass yield. The developed canopy crop curves revealed that the leaf density of drip irrigation treatments was slightly behind (1–4 days, depending on the irrigation treatment and crop season) that of the sprinkler irrigation treatment in time. The results also demonstrated an overall effect of irrigation treatment on downy mildew, in which downy mildew incidence was lower in plots irrigated by drips following emergence when compared to the sprinkler. The study concluded that drip irrigation has the potential to be used to produce organic spinach, conserve water, enhance the efficiency of water use, and manage downy mildew, but further work is required to optimize system design, irrigation, and nitrogen management practices, as well as strategies to maintain productivity and economic viability of utilizing drip irrigation for spinach.


Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


Author(s):  
Mădălina Stănescu ◽  
Constantin Buta ◽  
Geanina Mihai ◽  
Lucica Roșu

Abstract In order to increase the competitiveness of an agricultural holding through the efficient use of the production factors, the modernization of an agricultural farm was carried out by exending the existing greenhouse with at least 700m2 for the intensive cultivation of ornamental plants - Thuja Orientalis. The material is produced by initiating crops in pots, with seedlings grown in pots or transplanting them in pots right after the first year of the multiplication and growing them in containers, appropriate to their size, until reaching their full value. From a technical point of view, reaching the objective will also be possible through a localized irrigation system.


Sign in / Sign up

Export Citation Format

Share Document