scholarly journals Response of Four Strawberry Cultivars to Clopyralid Applied during Fruiting Stage

2013 ◽  
Vol 23 (3) ◽  
pp. 301-305 ◽  
Author(s):  
Clinton J. Hunnicutt ◽  
Andrew W. MacRae ◽  
Vance M. Whitaker

With the reduction in the availability of methyl bromide as a soil fumigant for Florida strawberry (Fragaria ×ananassa) culture, annual broadleaf weeds are expected to become increasingly troublesome to control. Recent studies show that along with the new fumigant systems, separate but complementary herbicide applications throughout the growing season will also be a necessity for acceptable weed control. The purpose of the study reported herein was to evaluate the impacts of multiple rates of the herbicide clopyralid on the growth and fruit production of four annual strawberry cultivars. Two greenhouse trials were conducted, evaluating the application of varying rates of clopyralid as a directed spray to well-established, mature plants of ‘Strawberry Festival’, ‘Florida Radiance’, ‘Treasure’, and Winterstar™ ‘FL 05–107’. Leaf production, leaf malformation, and marketable yield were evaluated to determine negative effects because of the physiological herbicidal effects, phytotoxic herbicidal effects, or both of clopyralid. Results from these studies showed that when clopyralid was applied at the maximum labeled rate of 3 oz/acre, less than 12% leaf malformation was observed among all cultivars, and marketable yield exhibited a linear increase as the rate of clopyralid increased, possibly due to a reduction in canopy coverage leading to more effective pollination.

HortScience ◽  
1992 ◽  
Vol 27 (8) ◽  
pp. 889-891 ◽  
Author(s):  
E.E. Albregts ◽  
C.M. Howard ◽  
C.K. Chandler

Florida-developed strawberry (Fragaria ×ananassa Duch.) clones or varieties grown in Florida nurseries and California-developed varieties grown in Canadian nurseries were evaluated in fruiting studies in Florida during four seasons. Transplants were defoliated so that 0%, 35%, 60%, or 87% of the foliage was removed. The Florida clones `Dover' and selection 79-1126 gave significant linear and/or quadratic early and total marketable yield responses to defoliation treatments for all seasons. The Canadian-grown clones `Chandler' and `Selva' gave similar responses during three seasons, but differences were not as great as for the Florida-grown clones. Many significant linear and quadratic responses in seasonal average fruit weight and plant size occurred for Florida-grown plants, but only one occurred with the Canadian-grown plants. Relative plant size at early and midseason decreased with greater defoliation.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yunduan Li ◽  
Yuanyuan Zhang ◽  
Xincheng Liu ◽  
Yuwei Xiao ◽  
Zuying Zhang ◽  
...  

Volatile compounds principally contribute to flavor of strawberry (Fragaria × ananassa) fruit. Besides to genetics, cultivation conditions play an important role in fruit volatile formation. Compared to soil culture as control, effects of substrate culture on volatile compounds of two strawberry cultivars (‘Amaou’ and ‘Yuexin’) were investigated. GC-MS analysis revealed significant difference in volatile contents of ‘Amaou’ strawberry caused by substrate culture. No significant effect was observed for cultivar ‘Yuexin’. For ‘Amaou’ strawberry from soil culture produced higher volatile contents compared with substrate culture. This difference is contributed by high contents of esters, lactones, ketones, aldehydes, terpenes, hydrocarbons, acids, furans and phenols in ‘Amaou’ strawberry fruit from soil culture. Furanones, beta-linalool, trans-Nerolidol and esters are major contributor to strawberry aroma, whose contents are higher in soil culture planted fruit when compared to substrate culture. Moreover, strawberry fruit from soil culture had higher transcripts related to volatile biosynthesis were observed, including FaQR, FaOMT, FaNES1, FaSAAT and FaAAT2.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1726
Author(s):  
Nasr H. Gomaa ◽  
Ahmad K. Hegazy ◽  
Arafat Abdel Hamed Abdel Latef

Perennial shrub-annual plant interactions play key roles in desert regions influencing the structure and dynamics of plant communities there. In the present study, carried out in northwestern Saudi Arabia, we examined the effect of Haloxylon salicornicum shrubs on their associated understory annual species across four consecutive growing seasons, along with a record of the seasonal rainfall patterns. We measured density and species richness of all the annual species in permanent quadrats located beneath individual shrubs, as well as in the spaces between shrubs. During wet growing season H. salicornicum shrubs significantly enhanced the density and species richness of sub-canopy species, whereas in the relatively dry seasons they exerted negative effects on the associated species. In all growing seasons, the presence of shrubs was associated with enhanced soil properties, including increased organic carbon content, silt + clay, and levels of nutrients (N, P and K). Shrubs improved soil moisture content beneath their canopies in the wet growing season, while in the dry seasons they had negative effects on water availability. Differences in effects of H. salicornicum on understory plants between growing seasons seem due to the temporal changes in the impact of shrubs on water availability. Our results suggest the facilitative effects of shrubs on sub-canopy annuals in arid ecosystems may switch to negative effects with increasing drought stress. We discuss the study in light of recent refinements of the well-known “stress-gradient hypothesis”.


2015 ◽  
Vol 10 (3) ◽  
pp. 163 ◽  
Author(s):  
Rocco Bochicchio ◽  
Roberta Rossi ◽  
Rosanna Labella ◽  
Giovanni Bitella ◽  
Michele Perniola ◽  
...  

The demand for sources of nutraceuticals has led to the rediscovery and diffusion of traditional crops such as chia (<em>Salvia hispanica</em> L.), whose leaves and fruits are rich in W3 fatty acids and anti-oxidants. Chia originates in Central America but it is rapidly expanding to new areas. A field experiment conducted at Atella in Basilicata (Southern Italy) was set up to test the response of chia to N top-dress fertilisation (0 and 20 kg ha<sup>–1</sup>) and to sowing density (D1=125, D2=25, D3=8 and D4=4 plants m<sup>–2</sup>) in a split-plot design with three replications. First results show maximum leaf area index values up to 7.1 and fresh vegetative biomass production at early flowering ranging between 50.87 (D4) and 59.71 (D1) t ha<sup>–1</sup>. Yield increased with plant density: a significantly (P&lt;0.01) higher production (398 kg ha<sup>–1</sup>) was reached in D1. N top-dressing had a detrimental effect on yield and corresponded to higher lodging and lower maturation percentage of seeds, though non-significant. Based on our first results it seems worthwhile to continue agronomical trials for chia in herbaceous systems of southern Italy for leaf production based on traditional genotypes, while fruit production might be pursued by adopting high sowing density and the search for longer-day genotypes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
María del Carmen Rodríguez-Hernández ◽  
Luna Morcillo ◽  
Idoia Garmendia

Abstract Quinoa (Chenopodium quinoa Will.) is an annual herbaceous Andean plant. In recent years there is a growing interest on it due to its high quality as food, its wide adaptation to agroecological conditions and resistance to different abiotic stresses. In this work, we evaluate the growth pattern of quinoa plants cv. ‘Titicaca’, subjected to different levels of salinity, focusing on leaf production and nutrient content. In this sense, the results have shown that a high concentration of salinity negatively affects the growth of quinoa plants. In fact, plants grown with 200 mM NaCl reduced the photosynthetic rate and levels of chlorophylls and carotenoids in comparison with the rest of the treatments. Likewise, it has been proven how the progressive increase in salinity has negative effects on transpiration, stomatal conductance and photosynthetic rate, with significant subsequent reductions in shoot biomass, leaf area and nutrient adquisition, but without a decline in leaf dry weight (DW) production. However, the treatment of 200 mM NaCl demonstrated the best results regarding the water-use efficiency, as well as the number of saline glands. According to our results, the quinoa plant cv. ‘Titicaca’ seems to be tolerant to moderate concentrations of salinity (50–100 mM NaCl). This study could serve as a reference on this little known and cultivated species in the Mediterranean region, since it could become an alternative crop in areas with moderate salinity problems.


2000 ◽  
Vol 9 (1) ◽  
pp. 49-59 ◽  
Author(s):  
T. SUOJALA

Matching the growth pattern of a vegetable cultivar with the seasonal changes in climate is a prerequisite for successful yield production in a northern climate. This paper describes the growth characteristics of two carrot cultivars in relation to climatic conditions in two years, with special reference to the factors associated with high yield. Cv. Fontana produced twice as large a leaf area and shoot weight as cv. Panther. Increased partitioning to shoot in the former cultivar also resulted in a higher root yield. Uniformity in relative growth rates during the period of analysis suggests that intervarietal differences in the shoot to root ratio and in the yield potential appear very early. Nearly half of the root weight at final harvest was gained after mid-August, when temperature and daily irradiance began to decrease. A large leaf area may ensure better utilisation of diminishing growth resources at the end of the growing season. In the more favourable growing season, 1997, plants invested more in leaf production than they did in 1996: shoot fresh and dry weights were considerably higher but leaf area was not much higher.;


2013 ◽  
Vol 93 (6) ◽  
pp. 997-999 ◽  
Author(s):  
Grant Sinclair ◽  
Christiane Charest ◽  
Yolande Dalpé ◽  
Shahrokh Khanizadeh

Sinclair, G., Charest, C., Dalpé, Y. and Khanizadeh, S. 2013. Influence of arbuscular mycorrhizal fungi and a root endophyte on the biomass and root morphology of selected strawberry cultivars under salt conditions. Can. J. Plant Sci. 93: 997–999. The influence of four arbuscular mycorrhizal fungi (AMF) (Glomus arenarium, G. caledonium, G. irregulare, and G. mosseae) and a root endophyte species (Piriformospora indica – Sebacinales) was investigated on four “day-neutral” strawberry (Fragaria×ananassa Duch.) cultivars (Albion, Charlotte, Mara des Bois, and Seascape) for their tolerance to salt stress. Fungal symbiosis tended to benefit strawberry plants in their tolerance to salinity, confirming the potential use of mycorrhizal biotechnology in horticulture in arid areas.


1989 ◽  
Vol 25 (3) ◽  
pp. 357-366 ◽  
Author(s):  
D. MacColl

SUMMARYYields of maize were determined in six years, on two soils, at up to four nitrogen levels following early and late planting. Without fertilizer nitrogen, high rainfall at the beginning of the growing season reduced yield on one soil but not on the other, while high rainfall at late silking and high total rainfall in the growing season reduced yields on both soils. As the level of fertilizer nitrogen increased, the negative effects of rainfall on yield tended to disappear. A three week delay in planting sometimes increased and sometimes decreased yield. The probable reasons for the observed effects of rainfall on yield are discussed.


2012 ◽  
pp. 367-374
Author(s):  
C. Copetti ◽  
G.S. Borges ◽  
J.L. Barcelos-Oliveira ◽  
L.V. Gonzaga ◽  
R. Fett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document