scholarly journals Reestablishment of Perennial Ryegrass in Lawns Damaged by Diesel and Hydraulic Fluid Spills

2016 ◽  
Vol 26 (3) ◽  
pp. 250-253
Author(s):  
Longyi Yuan ◽  
Yang Gao ◽  
Deying Li

Petroleum-based spills on turfgrass often occur during lawn care maintenance. Damage caused by diesel and hydraulic fluid is particularly difficult to correct. The objective of this study was to compare the effectiveness of combining mulching with remediation for reseeding spilled areas in lawns. Diesel and hydraulic fluid were applied to plots at a rate of 15 L·m−2. Immediately after the spill treatments, two liquid humic amendments and an activated flowable charcoal were applied at a volume rate of 8 L·m−2, respectively, with tap water/dishwashing detergent used as a control. Nitrate nitrogen was added to each remediation treatment to facilitate remediation. The spilled areas were reseeded with perennial ryegrass (Lolium perenne) and then mulched with biochar, peat pellets, and paper pellets, respectively. At 6 weeks after seeding, humic amendment 1 and activated charcoal showed better turf quality than humic amendment 2. Peat pellet mulching presented better turf quality than other mulching methods. Reseeding perennial ryegrass and mulching with peat pellets after remediation with either humic amendment 1 or activated charcoal resulted in acceptable turf quality 6 weeks after diesel and hydraulic fluid spills. Therefore, this reestablishment method is recommended as a practical way to deal with diesel or hydraulic fluid spills in cool-season turfgrasses.

2007 ◽  
Vol 17 (3) ◽  
pp. 363-367 ◽  
Author(s):  
Jack Fry ◽  
Randy Taylor ◽  
Bob Wolf ◽  
Dick Stuntz ◽  
Alan Zuk

Turfgrass managers in the transition zone are interested in converting swards of cool-season grasses to cold-hardy seeded bermudagrass (Cynodon dactylon) in an effort to reduce water and fungicide inputs. The objective of this study was to evaluate the potential for establishing ‘Riviera’ bermudagrass in a perennial ryegrass (Lolium perenne) sward by using a strip-seeding technique, and then to build a machine that would facilitate the process. Four, 2-inch-wide tilled rows, 1 inch deep and 15 inches apart, were created in 6 × 6-ft plots and seeded by hand with ‘Riviera’ bermudagrass at 104 lb/acre pure live seed in July 2002. In one set of strip-seeded plots, a 7-cm-wide overspray of glyphosate (≈0.5 inch on either side of the row) was applied over tilled rows after seeding to suppress perennial ryegrass further. Plots established by the strip-seeding technique exhibited 71% bermudagrass coverage after two growing seasons, and 87% coverage when rows received a glyphosate overspray. Broadcasting ‘Riviera’ seed into perennial ryegrass plots resulted in 60% bermudagrass coverage at the end of the second season of establishment. A strip seeder was constructed and used to seed ‘Riviera’ into existing perennial ryegrass turf in late July 2004 using the aforementioned row configurations and a glyphosate overspray. Coverage evaluated the following spring, before green-up, was 10.3% compared with 0% coverage where ‘Riviera’ was broadcast seeded. At the seeding rates evaluated, 79% less ‘Riviera’ bermudagrass seed was required when using the strip-seeding method, and golfers would consider the surface more amenable to play during the establishment period compared with broadcasting glyphosate and seed. A patent is pending on the strip-seeding equipment and establishment process.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 910-910
Author(s):  
L. Goldring ◽  
M. Lacasa ◽  
E. R. Wright ◽  
B. A. Pérez ◽  
M. C. Rivera

A perennial ryegrass (Lolium perenne L.) lawn located at Castelar (Buenos Aires Province) showed disease symptoms during the summer of 2003. Chlorotic patches as much as 15 cm in diameter appeared on the lawn. Later, dead plants with white mycelia developing on the crown and surrounding soil occurred at the periphery of the rings. Plants showed leaf chlorosis and crown and root rot. No sclerotia developed on plant organs. Diseased plants were collected, washed with running tap water for 4 h, and disinfested in 5% NaOCl for 2 min. Pieces, 3 to 5 mm long from symptomatic leaves, crowns, and roots, were incubated on 2% potato dextrose agar (PDA) at 22 to 25°C with a 12-h light/dark cycle. Mycelia growing on the soil surface was transferred to PDA and incubated under the same conditions. After 3 to 4 days, white, conspicuous mycelia that produced sclerotia grew from diseased tissue pieces and soil mycelial samples. Sclerotia were nearly spherical, 1 to 2 mm in diameter, white but turning brown with age, and produced in large numbers over the entire colony surface. Primary hyphae showed clamp connections at the septa. A pathogenicity test was performed with 20 1-month-old plants of L. perenne grown in a 1:1 (v/v) mixture of sand and soil contained in 24- × 17- × 4-cm plastic trays. Seven-day-old fungal cultures grown on PDA were cut into 1- cm2 pieces and placed among the plants on the substrate. Each tray was inoculated with seven inoculum pieces. Five trays of plants were inoculated with the fungus, and plants in five trays that served as controls had only sterile pieces of PDA placed on the substrate. All plants were maintained at 25°C and watered frequently. First symptoms, consisting of chlorosis, were observed 4 days after inoculation. Of the plants, 34, 59, 60, 65, and 70% developed symptoms 6, 9, 14, 17, and 21 days after inoculation, respectively. Control plants remained healthy. The fungus was reisolated from diseased plants and identified as Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) C.C. Tu & Kimbr.) on the basis of morphological and cultural characteristics (3,4). The disease has been observed causing stalk rot on perennial ryegrass in the United States (1) and Australia (2). To our knowledge, this is the first report of S. rolfsii causing disease on L. perenne in Argentina. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St. Paul, MN. 1989. (2) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2007. (3) J. E. M. Mordue. No. 410 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, UK, 1974. (4) Z. K. Punja and A. Damiani. Mycologia 88:694, 1996.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 895E-895 ◽  
Author(s):  
Fahed A. Al-Mana ◽  
Hesham H. Abdel-Kader ◽  
Ritchard J. Bisarove

Effects of mefluidide, paclobutrazol, and their mixture on shoot and root growth of perennial ryegrass (Lolium perenne L. `Wendy') and creeping red fescue (Festuca rubra L. `Dawson') were studied under container culture. Mefluidide applied alone or in combination with paclobutrazol caused significant reduction in shoot and root growth of perennial ryegrass and red fescue. These treatments also enhanced turf green color of both species and increased their root–shoot percentage, with no major effect on turf quality. Paclobutrazol applied alone reduced shoot height of perennial ryegrass and red fescue by 10% and 32%, respectively, and caused little reduction in their shoot weights, with no effect on turf quality and color. Although paclobutrazol applied alone reduced the root length and percentage of root–shoot dry weight of perennial ryegrass, it did not affect red fescue.


2006 ◽  
Vol 20 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Whitnee L. Barker ◽  
Josh B. Beam ◽  
Shawn D. Askew

Field studies have shown that rimsulfuron can move laterally with mower tires and injure neighboring cool-season grasses, indicating that persistent chemical can dislodge from turfgrass foliage. Laboratory studies were conducted to evaluate persistence and stability of14C rimsulfuron on perennial ryegrass and annual bluegrass foliage. Rimsulfuron was absorbed by annual bluegrass and perennial ryegrass equivalently, and persisted equally on foliage of each species. When extracted with a water rinse, 57% of applied rimsulfuron was recovered after 10 min, and 42% of applied rimsulfuron was recovered after 96 h. Rimsulfuron was stable 4 d after application based on comparison of rinse water chromatograms to stock solution chromatograms. These data indicate that appreciable rimsulfuron persists on turf foliage for 4 d. Thus, limiting traffic on treated areas for several hours to allow drying is not a viable method to prevent lateral relocation of rimsulfuron, and subsequent injury to cool-season turfgrasses.


HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Francesco Rossini ◽  
Roberto Ruggeri ◽  
Tiziano Celli ◽  
Francesco Maria Rogai ◽  
Ljiljana Kuzmanović ◽  
...  

In the transition zone, warm-season grasses are often overseeded with diploid perennial ryegrass (Lolium perenne L., 2n = 2x = 14) to provide a temporary green surface for winter sporting activities. Because improved cultivars of perennial ryegrass will often persist into summer in overseeded turf, alternative cool-season grasses have been developed to facilitate more rapid transition back to the warm-season species. Limited information is available on these alternative species, especially with regard to their germination characteristics under shade and performance under limiting factors, such as low temperature and restricted photoperiod. Greenhouse and growth chamber studies were designed to test four alternative overseeding grasses in comparison with diploid perennial ryegrass, to verify their potential use in the artificial environment of modern stadiums. Meadow fescue (Festuca pratensis Huds.), tetraploid perennial ryegrass (Lolium perenne L., 2n = 4x = 28), annual ryegrass (Lolium multiflorum Lam.), and spreading diploid perennial ryegrass [Lolium perenne L. subsp. stoloniferum (C. Lawson) Wipff.] were tested. Six different shade treatments were used in the greenhouse study, including 30%, 50%, 70%, 90%, and 100% shade and a nonshaded control (0% shade). Germination was monitored daily over a 21-day period by counting and removing emerged seedlings. The experimental design for this study was a randomized complete block design, with four replications of each species and shade level for a total of 120 experimental units. In the growth chamber study, the same plant material was tested simulating optimal, suboptimal, and critical environmental conditions that can be potentially found within a modern sport facility. In the greenhouse study, the highest final germination was observed with annual ryegrass at 90% shade (98.7%), whereas the lowest for tetraploid perennial ryegrass at 30% shade (58.8%). Annual ryegrass was the fastest emerging species, whereas meadow fescue the slowest. In the growth chamber study, in comparison with perennial ryegrass, the following results may be summarized: 1) meadow fescue and tetraploid ryegrass showed coarser leaf texture, similar growth rates and Normalized Difference Vegetation Index (NDVI) value; 2) annual ryegrass had similar leaf texture, accelerated growth characteristics, and lower NDVI value; and 3) spreading perennial ryegrass displayed finer leaf texture, lower vertical growth, and similar NDVI value.


HortScience ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Peter H. Dernoeden ◽  
Cale A. Bigelow ◽  
John E. Kaminski ◽  
John M. Krouse

Smooth crabgrass [Digitaria ischaemum (Schreber) Schreber ex Muhlenb.] is an invasive weed of cool-season turfgrasses. Previous research has demonstrated that quinclorac is an effective postemergence herbicide for crabgrass control, but performance has been erratic in some regions. Furthermore, quinclorac may elicit objectionable levels of discoloration in creeping bentgrass (Agrostis stolonifera L.). The objectives of this 3-year field study were to determine optimum rates and timings of quinclorac applications that provide consistent levels of effective crabgrass control and to assess creeping bentgrass quality responses to quinclorac. To evaluate crabgrass control, quinclorac was applied in early-, mid- and late-postemergence timings at various rates to a perennial ryegrass (Lolium perenne L.) turf. Similar treatments were applied to creeping bentgrass to determine if application timing and rate influenced the level and duration of discoloration. Quinclorac was applied alone or was tank-mixed with either urea (N at 6.1 kg·ha-1) or chelated iron (Fe)+nitrogen (N) (FeSO4 at 1.1 kg·ha-1+N at 2.2 kg·ha-1) to determine if they would mask discoloration. Crabgrass control generally was more effective in the early- and midpostemergence application timings. A single application of quinclorac (0.84 kg·ha-1) was effective where crabgrass levels were moderate, but sequential (i.e. multiple) applications were required where crabgrass levels were severe. The most consistent level of crabgrass control where weed pressure was severe occurred with three, sequential quinclorac (0.37 or 0.42 kg·ha-1) applications. Creeping bentgrass exhibited 2 to 11 weeks of unacceptable discoloration in response to sequential quinclorac applications. Chelated Fe+N was more effective than urea in masking discoloration. In general, chelated Fe+N tank-mixed with quinclorac masked discoloration and turf had quality equivalent to untreated bentgrass on most, but not all rating dates. Chemical names used: 3,7,-dichloro-8-quinolinecarboxylic acid (quinclorac).


2000 ◽  
Vol 53 ◽  
pp. 277-283 ◽  
Author(s):  
M.P. Finlayson ◽  
F. Dastgheib

The tolerance of browntop (Agrostis capillaris L) perennial ryegrass (Lolium perenne L) Chewings fescue (Festuca nigrescens Lam) and annual poa (Poa annua L) to twelve herbicides with and without two organosilicone surfactants (Silwet L77 and Silwet S800) were assessed Annual poa was controlled by haloxyfop and clethodim plus S800 Browntop was highly tolerant to chlorsulfuron and metsulfuron and Chewings fescue to haloxyfop fluazifop clethodim and sethoxydim Organosilicone surfactants affected the tolerance of some species to certain herbicides For example Silwet L77 reduced the tolerance of annual poa to glyphosate but S800 increased the tolerance of perennial ryegrass to terbuthylazine The results have implications for the management of cool season turf


1997 ◽  
Vol 48 (3) ◽  
pp. 337 ◽  
Author(s):  
F. R. McKenzie

Use of Lolium perenne (perennial ryegrass) in subtropical environments has been limited by its lack of persistence, possibly resulting from poor grazing management. Perennial ryegrass tiller appearance rates (TAR) and tiller death rates (TDR) were monitored under sheep grazing for 2 years. There was a tillering ‘flush’ during the cool-season months, relative to summer. This flush was highest for spring, with a minor trough in winter, and was associated with high TAR and low TDR for these periods. Summer was characterised by high TDR and low TAR. Seasonal patterns of tillering and death were largely unaffected by grazing, although the magnitude of TAR and TDR was manipulated by grazing within a given season. Frequent intense grazing initially produced high TAR, but these were not sustained. Frequent intense grazing resulted in the highest TDR relative to other treatments. Infrequent grazing, irrespective of intensity, resulted in the lowest TDR, particularly during summer, and should be considered by managers to enhance persistence of perennial ryegrass in the subtropics.


Crop Science ◽  
2007 ◽  
Vol 47 (4) ◽  
pp. 1596-1602 ◽  
Author(s):  
Brent S. Hulke ◽  
Eric Watkins ◽  
Donald Wyse ◽  
Nancy Ehlke

HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 798-800 ◽  
Author(s):  
John B. Workman ◽  
Patrick E. McCullough ◽  
F. Clint Waltz ◽  
James T. Brosnan ◽  
Gerald M. Henry

Turfgrass managers applying aminocyclopyrachlor for annual and perennial broadleaf weed control in cool-season turfgrasses may want to reseed into treated areas. Field experiments were conducted in Georgia), Tennessee, and Texas to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after aminocyclopyrachlor applications. Perennial ryegrass and tall fescue establishment were similar to the non-treated control after treatments of aminocyclopyrachlor and 2,4-dichlorophenoxyacetic acid (2,4-D) + dicamba + methylchlorophenoxypropionic acid (MCPP) at 0, 2, 4, or 6 weeks before seeding. Results demonstrate that no reseeding interval is required after aminocyclopyrachlor treatment. Perennial ryegrass and tall fescue can be safely seeded immediately after aminocyclopyrachlor treatment at 39, 79, and 158 g/a.i./ha.


Sign in / Sign up

Export Citation Format

Share Document