Film-mulched maize production: response to controlled-release urea fertilization

2017 ◽  
Vol 155 (8) ◽  
pp. 1299-1310 ◽  
Author(s):  
J. M. GUO ◽  
J. Q. XUE ◽  
A. D. BLAYLOCK ◽  
Z. L. CUI ◽  
X. P. CHEN

SUMMARYOptimal nitrogen (N) management for maize in the film-mulched production systems that are widely used in dryland agriculture is difficult because top-dressing N is impractical. The current research determined how matching N supply and demand was achieved before and after silking stages, when single applications of controlled release urea (CRU) were combined with conventional urea in film-mulched maize production. The CRU: urea mixture was applied in a 1 : 2 or 2 : 1 ratio and all three fertilizer regimes (urea alone and CRU: urea at 1 : 2 or 2 : 1) were applied at N rates of 180 and 240 kg/ha over 2 years. The 1 : 2 CRU: urea mixture, applied once at 180 kg N/ha, was found to synchronize N supply with demand, thereby reducing N losses. The highest grain yields (11·8–12·0 t/ha), N uptake (232–239 kg/ha), N recovery (65·8–67·7%) and high net economic return were achieved with this regime. These results indicate that a single application of a mixture of CRU and urea can synchronize N supply with demand and provide higher yields and profits than conventional N fertilization in film-mulched maize systems.

1999 ◽  
Vol 124 (6) ◽  
pp. 719-725 ◽  
Author(s):  
G.A. Picchioni ◽  
Héctor M. Quiroga-Garza

Two greenhouse studies were conducted to trace the fate of fertilizer N in hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy `Tifgreen'], and to estimate total plant N recovery and losses. The first experiment was performed during winter, with artificial light supplementing natural light to provide a photoperiod of 13.6 to 13.8 hours. The second experiment was conducted during summer and fall under only natural light conditions, with a progressively decreasing photoperiod of 13.7 to 11.1 hours. Urea (UR), ammonium sulfate (AS), and ammonium nitrate (AN) were labeled at 2 atom% 15N, and applied at N rates of 100 or 200 kg·ha-1 for 84 days (divided into six equal fractions and applied every 14 days). Fertilizer N source did not affect total dry matter (DM) accumulation by the plant components, but the high N rate increased clipping DM production under the longer photoperiod. Under the decreasing photoperiod, overall DM production was reduced, and clipping DM production was unaffected by increased N rate. Average N concentration of clippings varied between N sources, ranging from a high of 38.6 g·kg-1 DM with AS to a low of 34.7 g·kg-1 for UR. In Expt. 1, the greatest total plant N recovery [clippings, verdure (shoot material remaining after mowing), and thatch plus roots] occurred with AS (78.5%) and the lowest with UR (65.9%). In Expt. 2, these values declined to 53.0% and 38.0%, respectively. Urea fertilization resulted in the greatest N losses as a fraction of the N applied (33.6% to 61.5%) and AS fertilization the lowest (20.7% to 46.3%). In view of the greater N losses, UR may be a less suitable soluble N source for bermudagrass fertilization within the conditions of this study. In addition, late-season N fertilization may result in a significant waste of fertilizer N as bermudagrass progresses into autumnal dormancy when temperature, photoperiod, and irradiance decline and cause reduction in growth and N uptake.


2012 ◽  
Vol 22 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton

The purpose of this article is to review nitrogen (N) controlled-release fertilizer (CRF) research methods used to measure nutrient release from CRFs. If CRF-N release patterns match vegetable crop needs, crop N uptake may become more efficient, thus resulting in similar or greater yields, reduced fertilizer N needs, and reduced environmental N losses. Three methods categories to estimate N release are: laboratory; growth chamber, greenhouse, or both; and field methods. Laboratory methods include a standard and accelerated temperature-controlled incubation methods (TCIMs); methods incubate CRF using selected time periods, temperatures, and/or sampling methods. Accelerated TCIMs, in contrast to the standard method, allow for shorter incubation periods. Growth chamber and greenhouse methods, including column and plastic bag studies, may be used to test new CRF products in conditions similar to particular vegetable production systems. However, the column method predicts N release from CRFs more effectively than the plastic bag method because of ammonia volatilization and lower N recovery rates associated with the bag method. Both field methods, pot-in-pot and pouch methods, are viable vegetable research options. The pouch method measures N remaining in the CRF prill and the pot-in-pot method measures N released from the CRF, thus each method can be applied to different research objectives. Nitrogen released during incubation may be measured using methods such as total Kjeldahl N (TKN), prill weight loss, combustion, colorimetric, or ion-specific electrodes. The prill weight loss method is the least expensive but can only be used with urea CRF. Thus, the CRF-N source(s) and research objectives will determine the appropriate N analysis method. More research needs to be completed on correlations of field and laboratory CRF extractions. Field release methods should be considered the most reliable indicator of CRF-N performance until a laboratory method reliably predicts CRF-N expected field response.


2010 ◽  
Vol 90 (2) ◽  
pp. 363-372 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
C A Grant ◽  
R. Lemke ◽  
N. Lupwayi

Field experiments were conducted on Dark Gray Luvisolic soils (Typic Cryoboralf) from 2004 to 2006 (wheat-canola-barley rotation) near Star City, Saskatchewan, and from 2004 to 2007 (barley-canola-wheat-barley rotation) near Beaverlodge, Alberta. The aim was to compare the effects of controlled-release urea (CRU) vs. conventional urea (hereafter called urea) on seed yield and N (i.e., protein) concentration, and N use efficiency (NUE). The treatments were combinations of tillage system [conventional tillage (CT) and no tillage (NT)], and N source (urea, CRU and a blended mixture), placement method (spring-banded, fall-banded and split application) and application rate (0-90 kg N ha-1). There was no tillage × fertilizer treatment interaction on the measured crop variables. Seed yield and crop N uptake and, to a lesser degree, seed N concentration generally increased with N application to 90 kg N ha-1. Fall-banded CRU or urea generally produced lower crop yield and N uptake than spring-banded CRU or urea. Split application of urea (half each at seeding and tillering) resulted in higher seed yield and N concentration in at least 3 of 7 site-years than did CRU and urea applied at a similar rate. A blend of urea and CRU was as effective as spring-banded CRU (at Star City only). Seed yield, N recovery and NUE were higher with spring-banded CRU than urea in 2 site-years, and similar to urea in other site-years. We conclude that for boreal soils of the Canadian prairies, spring-banded CRU is as effective as urea, and in some years more effective, in increasing crop yield and N recovery; however, urea split application can be even more effective in addition to having an advantage in managing risk.Key words: Controlled-release urea, Gray Luvisol, nitrogen source, nitrogen recovery, nitrogen use efficiency, tillage systems


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


2001 ◽  
Vol 1 ◽  
pp. 114-121 ◽  
Author(s):  
Lenz Haderlein ◽  
T.L. Jensen ◽  
R.E. Dowbenko ◽  
A.D. Blaylock

Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.


2014 ◽  
Vol 76 ◽  
pp. 211-216
Author(s):  
Iris Vogeler ◽  
Mark Shepherd ◽  
Gina Lucci

Abstract Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. We investigated the effects of N fertiliser management on pasture production and modelled N losses, either via direct leaching of fertiliser N, or indirectly through N uptake and subsequent excretion via dairy cow grazing. The Agricultural Production Systems Simulator (APSIM) was first tested with experimental data from fertiliser response experiments conducted on a well-drained soil in the Waikato region of New Zealand. The model was then used in a 20- year simulation to investigate the effect of fertiliser management on pasture response and the impacts on potential leaching losses. The risk of direct leaching from applied fertiliser was generally low, but at an annual rate of 220 kg N/ha exceeded that from urine patches in one out of 10 years. The main effect of N fertiliser on leaching risk was indirect via the urine patch by providing higher pasture yields and N concentrations. Best management practices could include identification of high risk periods based on environmental conditions (e.g. soil moisture, plant growth), avoidance of fertiliser applications in these periods and the use of duration controlled grazing (DCG) to prevent excreta deposition onto the grazing area during critical times. Keywords: Modelling, APSIM, N fertilisation rates, N fertilisation timing, direct and indirect leaching, urine patches


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2354
Author(s):  
Asher Bar-Tal ◽  
Escain Kiwonde ◽  
Beeri Kanner ◽  
Ido Nitsan ◽  
Raneen Shawahna ◽  
...  

The overall aim of this research was to optimize nitrogen (N) fertilization of plants under desalinated water and a wide range of chloride concentrations for high yield while minimizing downward leaching of nitrate and chloride. The response of two crops, lettuce and potato, to N concentration (CN) in the irrigating solution using desalinated and wide range of Cl concentrations (CCL) was evaluated. The yields of both crops increased with N up to optimal CN of the irrigating solution and decreased as CCL increased. Optimal CN in both crops was higher in the desalinated water than high CCL treatments. N uptake by plants increased with CN in the irrigating solution and the highest uptake was at low CCL. As expected, N fertilization suppressed Cl accumulation in plant tissues. Drainage of N and Cl increased with increase in CCL in the irrigating solution and N fertilization above optimal CN resulted in steep rise in downward N leaching. The overall conclusion is that as water quality is improved through desalination, higher N supply is required for high yields with less groundwater pollution by downward leaching of N and Cl.


1998 ◽  
Vol 131 (4) ◽  
pp. 395-407 ◽  
Author(s):  
A. G. CHALMERS ◽  
C. J. DYER ◽  
R. SYLVESTER-BRADLEY

Amounts of spring nitrogen (N) fertilizer (0–240 kg/ha), combined with three timing treatments (single, divided early or divided late), were tested at 14 sites in England and Wales between 1984 and 1988 to determine the optimum fertilizer N requirement for winter oats. The trials were superimposed on commercial crops of the cultivars Pennal (9 sites) or Peniarth (5 sites). Optimum amounts of N ranged from nil to 202 kg/ha (mean 119) and optimum yields varied between 5·8 and 9·9 t/ha (mean 7·3). Much (c. 60%) of the inter-site variation in N optimum was explained by differences in soil N supply, as indicated by N offtake in the grain at nil applied N. Mean yield differences between single and early (+0·08 t/ha) or late (−0·04 t/ha) divided dressings were slight, although significant (P<0·05) but inconsistent yield effects were obtained from early N at two sites and late N at three sites.Lodging occurred at 11 of the 12 sites where lodging scores were recorded and always increased significantly (P<0·05) with applied N. The amount of crop lodging at N optimum was, on an area basis, <50% at nine of the sites. The overall extent of site lodging was also influenced by soil N fertility and hence inversely related to N optimum. However, multiple regression, using site lodging as well as soil N supply, only accounted for slightly more (65%) of the variation in N optimum, which suggests that lodging was not a major limiting factor. Lodging was unexpectedly less from early N (mean 43%), but more from late N (53%) divided dressings, compared with a single N dressing (49%). Early N reduced lodging significantly (P<0·05) at four sites, although the actual reduction was only large at one site where early N also increased yield significantly (+0·57 t/ha).Grain N concentrations increased significantly (P<0·05) with applied N, on average by 0·12% per 40 kg/ha N increment. Timing effects on grain N concentration were very small, with mean values of 1·94, 1·91 and 1·96%N respectively from single, early and late divided dressings. Apparent recovery in grain of fertilizer N at the optimum amount ranged from 13 to 57% (mean 37), with better N recovery at the more yield-responsive sites. Changes in mean grain weight due to the amount and timing of fertilizer N were small, with an average reduction of 0·6 mg/grain per 40 kg/ha N applied. The adverse effects of N fertilizer on grain quality were slight and unlikely to have commercial significance. The agronomic implications of these results on the N fertilization of winter oats are discussed.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 521
Author(s):  
Haiyan Liang ◽  
Pengfei Shen ◽  
Xiangze Kong ◽  
Yuncheng Liao ◽  
Yang Liu ◽  
...  

Lower nitrogen recovery efficiency (NRE) and negative environmental impacts caused by excessive nitrogen (N) fertilization threaten the sustainability of agriculture. Efficient and appropriate fertilization practices are extremely important to achieve higher crop yield with minimum N loss. A field microplot experiment was conducted in a wheat-maize rotation system in Shaanxi province, at North China Plain, using the 15N isotope tracer technique to qualify the different annual N managements in terms of crop yield, NRE, N distribution in plant-soil, and N losses to optimize the N management. The experiment included four N treatments: conventional practice with 510 kg ha−1 annually in four applications (N1), and three optimized N treatments, reducing N rate to 420 kg ha−1, adjusting topdressing fertilizer times and using slow-release fertilizer (SRF) (N2, N3, N4). The results showed that the grain yield and N uptake did not differ significantly among treatments. N from fertilizer taken up (Ndff) by wheat was not affected by N management; however, in maize, Ndff performed differently. Optimized treatments significantly decreased the Ndff as compared to N1 treatment. Furthermore, NRE of wheat and annual nitrogen recovery efficiency (annual NRE) did not differ among treatments in 2016 but significantly increased in 2017 compared to N1. Annual NRE in 2017 was similar to that obtained for wheat. For maize, optimized N managements decreased the NRE in N3 and N4 treatments of two years. Potential losses in wheat were also similar amongst treatments, but in maize, N3 and N4 had lower residual N in the soil’s top 60 cm but resulted in higher potential losses than N1 and N2. Overall, our results demonstrate that applying 420 kg N ha−1 annually in three applications and combining SRF and urea are effective to sustain crop yield, improve the efficiency of N usage by maize, and reduce N losses in this region.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 750
Author(s):  
Jianwei Zhang ◽  
Yan Zhou ◽  
Weiwei Li ◽  
Muhammad Y. Nadeem ◽  
Yanfeng Ding ◽  
...  

Straw-derived N (Straw-N) is an important organic N source, but its distribution in soil–rice systems regulated by water management and N fertilization is poorly understood. Therefore, a pot experiment using 15N-labeled wheat residue was conducted with conventional flooded irrigation (CF) and alternate wetting/drying irrigation (AWD) both with and without N fertilization. Results showed that the whole-plant straw–N recovery rate and the soil residue rate were 9.2–11.9% and 33.5–43.1%, and 10.2–13.8% and 33.7–70.2% at panicle initiation stage (PI) and mature stage (MS), respectively. There was no interaction between water management and N fertilization. Compared to CF, AWD did not affect whole-plant straw-N absorption and significantly changed its distribution in various plant parts, such as increasing the straw-N accumulation in roots at PI and decreasing it at MS. N fertilization addition markedly promoted the transfer of straw-N to the plant but reduced the contribution rate of N uptake by the plant. Furthermore, AWD or N fertilization addition allowed more straw-N to remain in the soil, and a positive interaction effect on the straw-N loss mitigation was found. These results suggest that AWD combined with N fertilization addition is a great measure to improve the efficient utilization of straw-N and avoid the risk of environmental pollution in a soil–rice system.


Sign in / Sign up

Export Citation Format

Share Document