scholarly journals Visual Quality, Gas Exchange, and Yield of Anemone and Ranunculus Irrigated with Saline Water

2021 ◽  
pp. 1-8
Author(s):  
Shannon Rauter ◽  
Youping Sun ◽  
Melanie Stock

In response to the growing demand for specialty cut flowers, floral crops are increasingly produced in semiarid areas where soil salinity can impact crop timing, reduce stem length, and decrease yield. The goal of this study was to investigate the salinity sensitivity of ‘Carmel’ and ‘Galilee’ anemone (Anemone coronaria), and ‘Amandine’ and ‘LaBelle’ ranunculus (Ranunculus asiaticus) with respect to physiological characteristics and marketable yield. Nine plants were irrigated weekly for 8 weeks with a nutrient (control) solution with an electrical conductivity (EC) of 0.5 dS⋅m–1 or saline solutions prepared by adding sodium chloride and calcium chloride dihydrate to a nutrient solution to obtain an EC of 1.5, 2.5, 3.5, 4.5, or 5.5 dS⋅m–1. Yield was evaluated by dividing stems into marketable and cull grades based on length and bloom quality. At the end of the study, the visual quality of the plants was scored, and gas exchange data were collected using a portable photosynthesis system. Cultivars of each species responded similarly, and marketable yields were low across all treatments, with average marketable yields (mean ± sd) of 1.7 ± 0.6 stems/plant for anemone and 1.2 ± 0.1 stems/plant for ranunculus. Visual quality (0–5 scale, with 0 = dead and 5 = excellent) decreased from 3 to 1 for anemone and 3 to 2 for ranunculus as EC increased from 0.5 to 4.5 dS⋅m–1 and 0.5 to 5.5 dS⋅m–1, respectively. Anemone leaf greenness decreased by 48%, stomatal conductance (gS) decreased by 79%, transpiration (E) decreased by 75%, and net photosynthesis (Pn) decreased by 92% when irrigation solution EC increased from 0.5 to 4.5 dS⋅m–1. The ranunculus growth index decreased by 17%, leaf greenness decreased by 45%, and E decreased by 23% as irrigation solution EC increased from 0.5 to 5.5 dS⋅m–1. Both anemone and ranunculus can be considered sensitive to salinity, indicating the importance of careful soil management in cut flower production systems in semiarid areas that are at risk for elevated soil salinity.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 342 ◽  
Author(s):  
Ida Di Mola ◽  
Stefano Conti ◽  
Eugenio Cozzolino ◽  
Giuseppe Melchionna ◽  
Lucia Ottaiano ◽  
...  

Hemp (Cannabis sativa L.) is a multipurpose plant attracting increasing interest as a source for the production of natural fibers, paper, bio-building material and food. In this research we studied the agronomical performance of Cannabis sativa cv. Eletta Campana irrigated with saline water. Under those conditions, we tested the effect of protein hydrolysate (PH) biostimulant application in overcoming and/or balancing deleterious salinity effects. The results of the diverse treatments were also investigated at the physiological level, focusing on photosynthesis by means of a chlorophyll a fluorescence technique, which give an insight into the plant primary photochemical reactions. Four salinity levels of the irrigation solution (fresh water–EC0, and NaCl solutions at EC 2.0, 4.0 or 6.0 dS m−1, EC2, EC4 and EC6, respectively) were combined with 2 biostimulant treatments (untreated (control) or treated with a commercial legume-derived protein hydrolysate (LDPH)). The increasing salinity affected plant photochemistry resulting in lower plant growth and seed production, while the LDPH biostimulant showed a protective effect, which improved crop performance both in control and in salinity conditions. The LDPH treatment improved seeds yield (+38.6% on average of all treated plants respect to untreated plants), as well as residual biomass, relevant in fiber production.


Author(s):  
José T. A. Souza ◽  
Járisson C. Nunes ◽  
Lourival F. Cavalcante ◽  
Juliete A. da S. Nunes ◽  
Walter E. Pereira ◽  
...  

ABSTRACT An experiment was undertaken in Remígio County, Paraíba State, Brazil, from July 2013 to May 2014, in order to evaluate the effects of saline water irrigation, bovine biofertilizer, and potassium type on soil salinity, leaf macronutrient composition, and production of yellow passion fruit cv. BRS Gigante Amarelo. Treatments were distributed in randomized blocks, arranged in a 2 × 2 × 2 factorial design, with reference to electrical conductivity of the water (0.35 and 4.00 dS m-1), soil with and without bovine biofertilizer, and application of potassium chloride as a conventional treatment (KCl) and in an organic polymer-coated form, supplied monthly. Bovine biofertilizer was diluted in non-saline water (proportion, 50%) and applied via water at a volume of 6 L plant-1 one day before transplanting, and then every 90 days. The combination of saline water with bovine biofertilizer raised soil salinity to a similar proportion when comparing saline water and conventional potassium chloride with saline water and polymer-coated potassium chloride. The increase in water saline concentrations associated with both types of potassium chloride and with bovine biofertilizer elevated soil salinity from non-saline to saline. On starting to flower, plants of cv. BRS Gigante Amarelo were deficient in macronutrients other than nitrogen and potassium, but nonetheless produced fruits of an adequate mass for the consumer market.


Author(s):  
Henderson C. Sousa ◽  
Geocleber G. de Sousa ◽  
Carla I. N. Lessa ◽  
Antonio F. da S. Lima ◽  
Rute M. R. Ribeiro ◽  
...  

ABSTRACT The excess of salts can affect several processes in the crops, and nitrogen (N) can attenuate the depressive effect of salinity. The objective was to evaluate the influence of nitrogen doses on the growth and gas exchange of corn crop irrigated with saline water. The experiment was conducted from June to September 2019 at the University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil. The experimental design was completely randomized, in a 2 x 3 factorial scheme (supply water of 0.3 dS m-1 and saline solution of 3.0 dS m-1) and three nitrogen doses, 0, 80, and 160 kg ha-1, corresponding to 0, 50, and 100% of the recommended dose respectively, with six repetitions. At 30 and 45 days after sowing (DAS), plant height, leaf area, number of leaves, photosynthesis, transpiration, and stomatal conductance were evaluated. Saline stress affects plant height, leaf area, photosynthesis, transpiration, and conductance at 30 DAS. The doses of 80 and 160 kg ha-1 provide greater performance in plant height, leaf area, photosynthesis, transpiration, and conductance at 30 DAS. The use of low salinity water and doses of 80 and 160 kg ha-1 were more efficient in terms of plant height, leaf area, photosynthesis, transpiration, and conductance at 45 DAS. The dose of 160 kg ha-1 of N attenuates the harmful effects of salts in AG 1051 hybrid maize plants, providing higher values of photosynthesis, transpiration, and stomatal conductance at 45 DAS when irrigated with water of 3.0 dS m-1.


2020 ◽  
Vol 11 ◽  
pp. E3113
Author(s):  
José Sebastião de Melo Filho ◽  
Toshik Iarley da Silva ◽  
Anderson Carlos de Melo Gonçalves ◽  
Leonardo Vieira de Sousa ◽  
Mario Leno Martins Véras ◽  
...  

Although not considered an essential element, silicon can be used to increase crop productivity, especially under stress conditions. In this sense, the objective was to evaluate the gas exchange of beet plants irrigated with saline water depending on the application of silicon. The experiment was conducted in a randomized block design, in a 5 x 5 factorial, referring to five levels of electrical conductivity of irrigation water (ECw): (0.5; 1.3; 3.25; 5.2 and 6.0 dS m-1) and five doses of silicon (0.00; 2.64; 9.08; 15.52 and 18.16 mL L-1), with six beet plants as an experimental unit. The effect of treatments on beet culture was evaluated at 30 and 60 days after irrigation with saline water from measurements of internal carbon concentration, stomatal conductance, net photosynthesis rate, instantaneous water use efficiency and instantaneous carboxylation efficiency using the LCpro+Sistem infrared gas analyzer (IRGA). Irrigation with saline water reduced the gas exchange of beet plants at 60 days after irrigation, but at 30 days after irrigation, the use of saline water increased stomatal conductance, transpiration rate and internal carbon concentration. The application of silicon decreased stomatal conductance, internal carbon concentration and efficiency in the use of water, but increased the rate of net photosynthesis, the rate of transpiration and instantaneous efficiency of carboxylation at 30 and 60 days after irrigation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


2020 ◽  
Vol 33 (1) ◽  
pp. 184-194
Author(s):  
GEOVANI SOARES DE LIMA ◽  
COSMO GUSTAVO JACOME FERNANDES ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI ◽  
PEDRO DANTAS FERNANDES

ABSTRACT The objective of this study was to evaluate the gas exchange, chloroplast pigments and growth of ‘BRS Rubi do Cerrado’ passion fruit as a function of irrigation with saline water and potassium fertilization in the seedling formation stage. The experiment was conducted under greenhouse conditions in the municipality of Pombal-PB, Brazil. A randomized block design was used in 5 x 2 factorial scheme, corresponding to five levels of water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7 and 3.5 dS m-1) and two doses of potassium - KD (50 and 100% of the recommendation), with four replicates and two plants per plot. Water salinity from 0.3 dS m-1 reduced the stomatal opening, transpiration, CO2 assimilation and inhibited the growth of ‘BRS Rubi do Cerrado’ passion fruit plants, at 40 days after sowing. There was no CO2 restriction in the substomatal cavity of passion fruit plants grown under water salinity from 0.3 dS m-1. Potassium dose of 150 mg kg-1 of soil, corresponding to 100%, intensified the effect of salt stress on the assimilation rate and instantaneous carboxylation efficiency in 'BRS Rubi do Cerrado' passion fruit. There was interaction between water salinity levels and potassium doses for the chlorophyll a and b contents of 'BRS Rubi do Cerrado' passion fruit.


Sign in / Sign up

Export Citation Format

Share Document