scholarly journals Nematode Populations and Peach Tree Survival, Growth, and Nutrition at an Old Orchard Site

1992 ◽  
Vol 117 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Dean R. Evert ◽  
Paul F. Bertrand ◽  
`Benjamin G. Mullinix

Bahiagrass (Paspalum notatum Flugge cv. Paraguayan-22) growing under newly planted peach [Prunus persica (L.) Batsch.] trees severely stunted the trees. Neither supplemental fertilizer nor irrigating with two 3.8-liters·hour-1 emitters per tree eliminated tree stunting emitters were controlled by an automatic tensiometer set to maintain 3 kpa at a depth of 0.5 m under a tree in bahiagrass. Preplant fumigation with ethylene dibromide at 100 liters·ha-1 increased tree growth, but not tree survival. Fenamiphos, a nematicide, applied under the trees each spring and fall at a rate of 11 kg-ha -1 had no positive effect on tree survival, tree growth, or nematode populations. Bahiagrass tended to suppress populations of Meloidogyne spp. under the trees., Meloidogyne spp. were the only nematodes present that had mean populations > 65 per 150 cm3 of soil. Leaf concentrations of several elements differed between trees growing in bahiagrass sod and in. bare ground treated with herbicides. Leaf Ca was low for all treatments in spite of a soil pH near 6.5 and adequate soil Ca. The severe stunting of trees grown in bahiagrass, irrespective of the other treatments, demonstrated that bahiagrass should not be grown under newly planted trees. The low populations of parasitic nematodes in bahiagrass showed that bahiagrass has potential as a preplant biological control of nematodes harmful to peach trees. Chemical name used: ethyl 3-methy1-4-(methylthio) phenyl (1-methylethyl) phosphoramidate (fenamiphos).

HortScience ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 26-28 ◽  
Author(s):  
Dean R. Evert ◽  
Paul F. Bertrand

More peach [Prunus persica (L.) Batsch.] trees survived when planted in killed bahiagrass (Paspalum notatum Flugge `Paraguayan-22') sod growing between previous orchard tree rows (98%) than when planted in previous tree sites (81%) or in previous tree rows, but halfway between previous tree sites (79%). The previous orchard was removed Nov. 1986, and new trees were planted Feb. 1987. Surviving trees in the killed sod grew better than trees at the other two sites. Tilling the sites before planting did not affect nematode populations or tree survival and growth. Soaking the tree roots in a fenamiphos solution (1 g·liter-1) for 20 minutes before planting resulted in 79% tree survival vs. 93% survival for the nonsoaked trees. Fenamiphos sprayed under the trees at a rate of 11.2 kg·ha-1 during the spring and fall of the planting year did not change nematode populations, tree survival, or tree growth. The fenamiphos sprays reduced the increase in trunk cross-sectional area by 3 cm2 for trees in the sod. Other than leaf Zn concentration, which was low, concentrations of the elements were within the sufficiency range for Georgia for all treatments. Trees planted in the killed sod had an increased leaf K concentration and decreased leaf Mg concentration when compared with trees planted in the rows. Chemical name used: ethyl 3-methyl-4-(methylthio)phenyl (1-methylethyl)phosphoramidate (fenamiphos).


2009 ◽  
Vol 134 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Dongyan Hu ◽  
Ralph Scorza

Since the first report of the ‘A72’ semidwarf peach [Prunus persica (L.) Batsch] tree in 1975, no new information has become available on this genotype. We evaluated the growth habit and verified the inheritance of ‘A72’ in a population of 220 progeny derived from self-pollination. Detailed tree and branch measurements revealed a unique forked-branch (FBR) character of the ‘A72’ (Nn) phenotype. The progeny segregated into 1 NN:2 Nn:1 nn. NN trees were indistinguishable from standard peach trees, Nn were FBR, and nn were dwarf. Hybrids between ‘A72’ and columnar (brbr) peach trees confirmed that FBR is inherited as a monogenic trait that appears to express incomplete dominance. ‘A72’ (Nn) trees were later blooming than sibling NN trees. The relationship (linkage or pleiotropy) between the growth habit of ‘A72’ and late bloom is not known. The structure of ‘A72’ trees presents new opportunities to breeder/geneticists, physiologists, and horticulturists to further explore the plasticity of peach tree growth and architecture that can be achieved through breeding. Applications of the ‘A72’ growth habit for commercial fruit production and as an ornamental, particularly in the dwarf form (nn) and in combination with the columnar tree (brbr) form, present opportunities that await exploration.


1994 ◽  
Vol 119 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Richard E.C. Layne ◽  
Chin S. Tan ◽  
David M. Hunter

Three cultivars (`Garnet Beauty', `Harbrite', `Canadian Harmony'), two ground covers (temporary cover vs. permanent sod), and no irrigation vs. season-long trickle irrigation were studied in a high-density (633 trees/ha) peach [Prunus persica (L.) Batsch] orchard established on Fox sand in 1980. From 1985 to 1989, soil water content in the top 130 cm was similar in nonirrigated and trickle-irrigated plots except during the growing season (May to September). Total soil water was lowest in nonirrigated plots that had permanent sod strips in the row middles and fell below the-permanent wilting point for ≥11 months in summer but not at depths below 130 cm. Trunk cross-sectional area (TCA) was greater for `Canadian Harmony' and `Harbrite' than `Garnet Beauty', ground-cover treatments had no effect, and irrigated trees were generally larger than those not irrigated. Photosynthetic rate and stomatal conductance differed by cultivar, were unaffected by ground cover, and were enhanced by irrigation. Defoliation differed by cultivar, ground cover had little effect, and irrigation usually delayed defoliation. Flower bud and shoot xylem hardiness differed by cultivar but not by ground cover and were generally enhanced by irrigation. Tree survival was significantly affected by cultivar, being best with `Harbrite' and `Canadian Harmony' and poorest with `Garnet Beauty'. Permanent sod enhanced tree survival while trickle irrigation reduced it. Cumulative marketable yields were affected more by cultivar than by ground cover or irrigation. `Canadian Harmony' had the highest yield, followed by `Harbrite', then `Garnet Beauty'. Yields in sod were slightly higher than in temporary cover and yields with trickle irrigation were slightly higher than without irrigation. The best soil-management system when TCA, marketable yield, and tree survival were considered was a combination of permanent creeping red fescue sod strips in the row middles and trickle irrigation in the tree row. This system is being recommended to commercial growers in southwestern Ontario.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 456b-456
Author(s):  
Dean R. Evert

Armothin® thinned `Sentinel' fruit on peach trees (Prunus persica L.) in 1993. Thinning increased as Armothin® rate in the single spray increased from 1.5X, to 3.0% to 6.0% (v:v) and as the percentage of open blossoms increased from 30% to 61%. The 1.5 % rate of Armothin® thinned significantly only on the third date, and the 6.0% rate overthinned slightly on the third date. Minor discoloration developed on the expanding leaves of a few of trees but disappeared in a few days. No leaf abscission occurred on treated trees and tree growth was normal. Variability between trees treated alike probably reflects the variability in bloom when sprayed. According to Akzo, Armothin® prevents pollination by reacting with the surface of the receptive stigma. Spraying after full bloom should selectively prevent fertilization of the last blossoms to open without destroying the fertilized fruit. This possibility will be tested in 1994. Armothin®, which is a contact thinner, seems to avoid the problems associated with thinners that act as growth regulators and with nonselective caustic thinners. Because of its low phytotoxicity and wide range of effective rates, Armothin® has great potential as a chemical thinner.


1994 ◽  
Vol 4 (1) ◽  
pp. 66-67
Author(s):  
D.M. Glenn ◽  
J. Kotcon ◽  
W.V. Welker

Three soil management treatments (cultivation, herbicide, and killed sod) were established in the drive middle of a 10-year-old apple orchard removed the year prior to planting peaches. The cultivation and herbicide treatments used preplant tillage, leaving a bare soil surface, whereas the killed-sod system was untilled. Peach trees (Prunus persica L. Batsch) were planted, and growth, yield, and soil bulk density were measured after 3 years. There were no differences in tree growth or yield for the three treatments These results were contrary to published reports that the killed-sod system increased early tree growth. The lack of growth response in the killed-sod system was attributed to the high soil bulk density remaining from the previous orchard. We concluded that truck and tractor traffic in the drive middle causes severe soil compaction, which may limit root development. The soil compaction can only be moderated by tillage.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 677-682 ◽  
Author(s):  
Richard C. Funt ◽  
Mark C. Schmittgen ◽  
Glen O. Schwab

The performance of peach trees [Prunus persica (L.) Batsch cv. Redhaven/Siberian C.] on raised beds as compared to the conventional flat (unraised) orchard floor surface was evaluated from 1982 to 1991. The raised bed was similar to the flat bed in cation exchange capacity (CEC), Ca, P, K, Mg, B, and Zn soil levels in the 0-15 cm depth. Microirrigation, using two 3.7 L.h-1 emitters per tree vs. no irrigation, was applied to trees planted in a north-south orientation on a silt loam, noncalcareous soil. Raised beds increased trunk cross-sectional area (TCA) and yield-efficiency over 5 years. Irrigation increased fruit mass mostly in years of highest evaporation. Significant year to year variations occurred in yield, fruit mass, TCA and yield efficiency. There were significant bed × year interactions for yield and TCA. Irrigation increased leaf boron content regardless of bed type. Leaf potassium was higher in flat beds. Nonirrigated trees had the lowest tree survival on the flat bed, but the opposite was true on the raised bed.


2021 ◽  
Author(s):  
Jorge Luis Montero-Muñoz ◽  
Carmen Ureña ◽  
Diego Navarro ◽  
Valentín Herrera ◽  
Pilar Alonso-Rojo ◽  
...  

Abstract Aims We studied the regeneration dynamics of woodlands and abandoned old fields in a landscape dominated by Quercus suber in its lower limits of rainfall and temperature. Two hypotheses were established: (1) regeneration of Quercus species is strongly favored by the presence of tree cover; and (2) growth of Q. suber is driven by the climatic variables that represent the lower ecological limit of its leading distribution edge. Methods We selected woodlands and old fields with and without tree remnants (n = 3 per type), and analyzed stand structure, soil parameters and tree growth. Results Succession was arrested in old fields without tree remnants. By contrast, remnant trees were accelerators of forest recovery in old fields. Tree cover played a fundamental role in Quercus recruitment throughout seed dispersal and facilitation that mitigate the effects of summer drought on seedlings. Also, tree cover improved soil parameters (e.g., organic matter) that are important factors for understanding differences in regeneration. Winter/spring precipitation exerted a positive effect on tree growth, as well as temperatures during winter/spring and September. Conclusions Regeneration dynamics are modeled by the density of tree cover in the cold and dry edge of the distribution area of Q. suber where Q. ilex is increasing in abundance. Although temperature has a positive effect on the tree growth of Q. suber, when demographic processes are considered, decreases in water availability likely play a critical role in Q. ilex recruitment. This in turn changes dominance hierarchies, especially in abandoned areas with little or no tree cover.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


1993 ◽  
Vol 73 (3) ◽  
pp. 847-855 ◽  
Author(s):  
H. A. Quamme ◽  
R. T. Brownlee

Early performance (6–8 yr) of Macspur McIntosh, Golden Delicious, and Spartan apple (Malus domestica Borkh.); Fairhaven peach [Prunus persica (L.) Batsch.]; Montmorency sour cherry (P. cerasus L.); and Lambert sweet cherry (P. avium L.) trees, tissue cultured (TC) on their own roots, was compared with that of the same cultivars budded on commercially used rootstocks. TC trees of all apple cultivars were similar in size to trees budded on Antonovka seedling or M.4 and exceeded the size of trees budded on M.26. They were delayed in flowering and in cropping compared with trees budded on M.26 and M.4. No difference in titratable acidity, soluble solids, flesh firmness, weight, flavor, and color between fruit from TC trees and from trees on M.4 and Antonovka seedlings was detected in 1 yr of measurement. However, fruit from TC Golden Delicious was more russeted and fruit from TC Spartan had more soluble solids. The difference in fruit appearance between TC and budded trees may result from a root-stock effect or a difference in budwood source, because Spartan fruit from trees on M.4 was more russeted than Spartan fruit from TC trees, but was not different from Spartan fruit from trees on Antonovka seedling. Trees of Macspur McIntosh on TC M.26 and on stool-layered M.26 were similar in size and yield efficiency. TC Fairhaven was larger in size than Fairhaven on Siberian C seedling, but was less yield efficient. No difference in fruit size, flesh firmness, or color was detected between fruit harvested from peach trees on the different roots. Montmorency and Lambert TC and on F12/1 were similar in tree size, respectively, but Montmorency and Lambert TC were more yield efficient than on F12/1. Fruit of TC Lambert was lighter in color and had higher titratable acidity than that of Lambert on F12/1, perhaps a result of earlier fruit maturity. Key words: Apple, peach, sweet cherry, sour cherry, self-rooted, rootstocks


2021 ◽  
Author(s):  
Jorge Montero-Muñoz ◽  
Carmen Ureña ◽  
Diego Navarro ◽  
Valentín Herrera ◽  
Pilar Alonso-Rojo ◽  
...  

Abstract AimsWe studied the regeneration dynamics of woodlands and abandoned old fields in a landscape dominated by Quercus suber in its lower limits for rainfall and temperature. Two hypotheses were established: (1) recruitment of Q. suber is restricted more by abiotic variations than other species adapted to more extreme Mediterranean conditions; and (2) decreases in precipitation reduce growth, but temperature positively affects growth in the leading cold edge of this species distribution area.MethodsWe selected nine sites containing forest stands and old fields with and without tree remnants, and analyzed stand structure, soil parameters and tree growth.ResultsSuccession was arrested in plots without tree remnants after cultivation abandonment. By contrast, remnant trees were accelerators of forest recovery. Tree cover played a fundamental role in Quercus recruitment throughout seed dispersal and facilitation effects that ameliorate summer drought. However, soil variables also significantly explained much of the variance observed and are important for understanding differences in regeneration. Winter and spring precipitation exerted a positive effect on tree growth, as well as temperatures during winter/spring and September.ConclusionsRegeneration dynamics are modeled by the density of tree cover in the cold and dry edge of the distribution area of Q. suber where Q. ilex is increasing in abundance. Although temperature has a positive effect on the tree growth of Q. suber, when demographic processes are considered, decreases in water availability likely play a critical role in Q. ilex recruitment. This in turn changes dominance hierarchies, especially in abandoned areas with little or no tree cover.


Sign in / Sign up

Export Citation Format

Share Document