scholarly journals Postharvest Handling of Cut Gloriosa rothschildiana O'Brien (Liliaceae) Flowers

1992 ◽  
Vol 117 (3) ◽  
pp. 442-445 ◽  
Author(s):  
Rodney B. Jones ◽  
Janyce K. Truett

Postharvest treatments designed to enhance the vase life of cut Gloriosa rothschildiana flowers were tested. Vase life was significantly extended by the germicides 8-HQC (250 mg·liter-1), DICA (50 mg·liter-1), and Physan-20 (50 mg·liter-1). Germicides acted primarily by improving solution uptake. Sucrose, either as a continuous treatment (of 2% or 5% w/v), or as a 24-hour pulse (20%), significantly enhanced vase life, primarily by enhancing the development of immature buds and delaying senescence in open flowers. Flowers stored at 1C developed signs of chilling injury within 3 days, but chilling symptoms were not displayed in stems stored at 10C for 10 days. Flowers were not affected when exposed to 50 μl ethylene/liter for 24 hours. Transport and short-term storage in sealed, air-filled bags to protect the flowers from physical damage resulted in some atmosphere modification within the bags. Fungal growth occurred when flowers were kept in air-tilled bags for more than 6 days, resulting in a reduction in vase life. Chemical names used: 8-hydroxyquinoline citrate (8-HQC); sodium dichloroisocyanuric acid (DICA); n-alkyl dimethyl ethylbenzyl ammonium chloride (Phyrsan-20).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Mohammadi ◽  
Mitra Aelaei ◽  
Mehdi Saidi

AbstractShort vase life, capitulum wilting, neck bending, and postharvest chilling injury (CI) are major disorders have negative impact on quality and marketing of gerbera cut flowers. Low storage temperatures prolonging the vase life, but on the other hand leads serious CI which decreases the quality and consumer preferences. Spermine (SPER) and γ-aminobutyric acid (GABA) were identified as anti-aging factors delay the senescence and elevate the chilling tolerance in many species. Greenhouse-grown gerbera cv. ‘Stanza’ sprayed with 2 mM SPER and 1 mM GABA twice (2 T) or thrice (3 T). Cut flowers were stored at 1.5 °C and 8 °C postharvest to study the effects of GABA and SPER on senescence and CI. Vase life, CI and quality of cut flowers were improved by GABA and SPER treatments. No CI was observed in GABA-treated flowers at 1.5 °C; while, flowers sprayed with water showed severe CI. GABA treatments efficiently prolonged the vase life for 6–7 days more than the control (15 days). GABA and SPER increased the fresh weight, solution uptake, protein and proline contents, catalase, peroxidase, and superoxide dismutase activities, while decreased the electrolyte leakage, H2O2, and malondialdehyde contents, polyphenol oxidase, lipoxygenase, and phospholipase D activities. GABA and SPER significantly prolonged the vase life and prevented degradation of proteins and chilling damage and increased capacity of detoxifying and scavenging of H2O2 and reactive oxygen species (ROS), led to alleviate the negative consequences of the senescence and CI.


1994 ◽  
Vol 119 (6) ◽  
pp. 1243-1247 ◽  
Author(s):  
Rodney B. Jones ◽  
Margrethe Serek ◽  
Chen-Lan Kuo ◽  
Michael S. Reid

Petal opening and senescence of cut Gladiolus, Iris, and Narcissus flowers was significantly inhibited by continuous treatment with 1 mm CHI. Vase life was doubled in individual flowers treated when half-open, and a similar effect was detected after pulsing cut gladiolus spikes with 1 mm CHI for 24 hours. Petal wilting was markedly inhibited in flowers treated with CHI and was confined to the outer 2 to 3 mm of petal margins as opposed to the entire petal in untreated flowers. These effects were not seen, however, in CHI-treated cut tulip flowers, where vase life was significantly reduced. CHI markedly inhibited protein synthesis in Gladiolus `New Rose' florets (a decrease of >60%). Treatment with a potent biocide, DICA, did not increase vase life; therefore, CHI was not prolonging flower longevity by preventing microbial growth in the vase solution. The results indicate that de novo protein synthesis is required for bulb flower development and opening and petal wilting and senescence. Chemical names used: cycloheximide (CHI), sodium dichloroisocyanuric acid (DICA).


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 513B-513
Author(s):  
Adel A. Kader

Biological factors involved in deterioration of fresh horticultural perishables include respiration rate; ethylene production and action; compositional changes associated with color, texture, flavor (taste and aroma), and nutritional quality; growth and development; transpiration; physiological breakdown; physical damage; and pathological breakdown. There are many opportunities to modify these inherent factors and to develop genotypes that have lower respiration and ethylene production rates, less sensitivity to ethylene, slower softening rate, improved flavor quality, enhanced nutritional quality (vitamins, minerals, dietary fiber, and phytonutrients including carotenoids and polyphenols), reduced browning potential, decreased susceptibility to chilling injury, and increased resistance to postharvest decay-causing pathogens. In some cases the goals may be contradictory, such as lowering phenolic content and activities of phenylalanine ammonialyase and/or polyphenoloxidase to reduce browning potential vs. increasing polyphenols as antioxidants with positive effects on human health. Another example is reducing ethylene production vs. increasing flavor volatiles production in fruits. Overall, priority should be given to attaining and maintaining good flavor and nutritional quality to meet consumer demands. Extension of postharvest life should be based on flavor and texture rather than appearance only. Introducing resistance to physiological disorders and/or decay-causing pathogens will reduce the use of postharvest fungicides and other chemicals by the produce industry. Changes in surface structure of some commodities can help in reducing microbial contamination, which is a very important safety factor. It is not likely that biotechnology-based changes in fresh flowers, fruits, and vegetables will lessen the importance of careful and expedited handling, proper temperature and relative humidity maintenance, and effective sanitation procedures throughout the postharvest handling system.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 480D-480
Author(s):  
Ria T. Leonard ◽  
Terril A. Nell ◽  
Jim E. Barrett ◽  
David G. Clark

The traditional use of poinsettias has been as potted plants. A new poinsettia variety, `Winter Rose Dark Red', is performing well as a cut flower, lasting 2 to 3 weeks. Various postharvest handling procedures were examined, including stem processing methods at harvest, storage and transit conditions, as well as handling practices at the wholesale, retail, and consumer levels, to determine the best handling practices to maximize quality and longevity. At harvest, traditional latex controlling techniques, such as dipping stems in 95% ethanol for 10 min and burning or boiling stem tips were tested. Stems wilted faster when dipped in ethanol or burned. The woody nature of the stem contains little latex compared to traditional varieties; thus, no latex-controlling methods are needed or beneficial. After harvest, there was no benefit found in hydrating stems in a commercial hydration solution compared to plain water. Transport and/or storage conditions between 10 to 15 °C for 3 to 4 days maximized longevity. Chilling injury occurred when transported at 4 °C. Leaves and bracts wilted when stored dry in a box, but recovered within 12 to 24 h when stored for 2 days. Leaves abscised after exposure to short-term wilting but no bract abscission occurred. Storing stems in a 10% bleach solution prevented wilting and reduced bacterial growth. Bracts were sensitive to mechanical injury during transit, resulting in bruising lesions on the bracts, which increased sensitivity to bract edge burn. Stems declined faster when maintained in a floral preservative compared to water during the consumer phase.


Author(s):  
Sharifah Hafiza Mohd Ramli ◽  
Yahya Sahari ◽  
Nur Farhana Abdullah ◽  
Siti Rajwani Hashim ◽  
Ahmad Fadhlul Wafiq Abdul Rahman ◽  
...  

Grain corn in nature possesses a tendency to absorb and release moisture even during storage.  Grain respiration will lead to fungal growth, consequently mycotoxin development and decreased nutritional components. Storage in tropical weather like Malaysia, in which the temperature is constantly hot throughout the year (temperature 23–33°C, with relative humidity around 81%) will promote further spoilage to the stored grain corn. Therefore, this paper discussed the properties of grain corn during three months of storage in a Malaysian weather setting. Grain corn with the initial moisture content of 12.5± 0.02% MC bagged in the; a) woven polypropylene jumbo bags, b) woven propylene 40 kg bag and c) plastic sealed container was stored in  two different storage facilities located in MARDI for three months. The grain corn after three months of storage showed a consistent water activity, a darkening value in Chroma index, within the permissible limit of fungal growth and exhibits insect pest development of two major species of Coleoptera family. Grain corn is considered safe after three months of storage because low aflatoxin levels have been found, but the physical structure has been compromised due to insect pest infestations.


2021 ◽  
pp. 108201322199884
Author(s):  
Rami Akkad ◽  
Ereddad Kharraz ◽  
Jay Han ◽  
James D House ◽  
Jonathan M Curtis

The odour emitted from the high-tannin fab bean flour ( Vicia faba var. minor), was characterized by headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC–MS). The relative odour activity value (ROAV) was used to monitor the changes in key volatile compounds in the flour during short-term storage at different temperature conditions. The key flavour compounds of freshly milled flour included hexanal, octanal, nonanal, decanal, 3-methylbutanal, phenyl acetaldehyde, (E)-2-nonenal, 1-hexanol, phenyl ethyl alcohol, 1-octen-3-ol, β-linalool, acetic acid, octanoic acid, and 3-methylbutyric acid; these are oxidative degradation products of unsaturated fatty acids and amino acids. Despite the low lipid content of faba beans, the abundances of aldehydes arising during room temperature storage greatly contributed to the flavour of the flour due to their very low odour thresholds. Two of the key volatiles responsible for beany flavour in flour (hexanal, nonanal) increased greatly after 2 weeks of storage at room temperature or under refrigerated conditions. These volatile oxidation products may arise as a result of enzymatic activity on unsaturated fatty acids, and was seen to be arrested by freezing the flour.


Sign in / Sign up

Export Citation Format

Share Document