scholarly journals Path Analysis of Tomato Yield Components in Relation to Competition with Black and Eastern Black Nightshade

1994 ◽  
Vol 119 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Milton E. McGiffen ◽  
Dan James Pantone ◽  
John B. Masiunas

Path analysis is a statistical method for determining the magnitude and direction of multiple effects on a complex process. We used path analysis to assess 1) the impact of black nightshade(Solarium nigrum L.) or eastern black nightshade(Solarium ptycanthum Dun.) competition on the yield components of `Heinz 6004' processing tomato (Lycopersicon esculentum Mill.) and 2) the relationship between tomato yield components and total and marketable yield. Either black or eastern black nightshade was interplanted with tomatoes at population densities from 0 to 4.8/m2. Path analysis revealed that increasing weed population density led directly to fewer green and total fruit per plant, two components of marketable yield. However, the percentage of culls per plant and fruit weight were not affected by nightshade population density. Using correlation coefficients alone would have lead to the erroneous conclusion that the percentage of culls did not affect marketable yield; our path analysis demonstrated that decreasing the percentage of culls through breeding or cultural practices will strongly affect marketable yield. The total number of fruit was the most important yield component in determining total and marketable yields per plant. Breeding and management practices that maximize fruit set, increase maturity at harvest, and decrease the percentage of culls would be expected to increase marketable yield.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 631c-631
Author(s):  
Milton E. McGiffen ◽  
Dan J. Pantone

Path analysis is a statistical method for determining the magnitude and direction of multiple effects on a complex process. We used path analysis to determine the direct effects of nightshade density on yield components (number of green fruit per plant, rotted fruit per plant, total fruit per plant, and weight per fruit) of the processing tomato cv. Heinz 6004. In addition, the analysis indicated the direct and indirect effects of yield components on total yield per ha and marketable yield per ha. The greatest direct effects of eastern black nightshade and black nightshade were on green fruit per plant and total fruit per plant. Effects other than density (density-independent factors) were more important in determining the number of rotted fruit per plant and weight per fruit. Path analysis showed that the total number of fruit per plant was the most important yield component determining total yield and marketable yield per ha.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Jamshid Ashigh ◽  
François J. Tardif

Many substitutions in the herbicide target enzyme acetohydroxyacid synthase (AHAS) confer whole-plant resistance and may reduce plant fitness. This study was done to determine the impact of different watering and temperature regimes on the germination, growth, and seed production of eastern black nightshade populations resistant (R) to AHAS inhibitors as conferred by an Ala205Val substitution in their AHAS. Growth and reproductive ability of four R and four susceptible (S) populations were determined in growth-cabinet and greenhouse studies. The R populations had lower total berry and viable seed production per plant than S under optimal conditions because of slower berry maturation. Seed production of both S and R populations decreased under lower or higher than optimal watering regimes; however, this reduction was more pronounced for the S populations so that seed production was comparable across S and R. The R populations had significantly higher germination and vegetative growth under cooler alternating temperature regimes. Although there were no differences between R and S plants under stress conditions, under optimal growth conditions, the Ala205Val substitution comes at a significant cost in eastern black nightshade. Under optimal growth conditions and in the absence of herbicide selection, S populations should eventually dominate over R; however, the lack of fitness differences under stress conditions could enhance the persistence of the R individuals.


1992 ◽  
Vol 117 (5) ◽  
pp. 730-735 ◽  
Author(s):  
Milton E. McGiffen ◽  
John B. Masiunas ◽  
Morris G. Huck

Field and greenhouse experiments were conducted to determine the response of eastern black nightshade (Solanum ptycanthum), black nightshade (S. nigrum), and tomato (Lycopersicon esculentum Mill. cv. Heinz 6004) to water stress and the effect of nightshade-tomato competition on soil water content. In the greenhouse, plants were exposed to three water regimes induced by watering either daily, weekly, or biweekly. Water deficit caused a similar decrease in height, weight, and leaf area in all three species. There was more than a 50% reduction in height when the plants were watered biweekly compared with daily watering. Water stress caused a shift in biomass from shoots to roots in all three species. Black nightshade and tomato produced thinner leaves in response to water deficit. Companion field experiments were conducted during the 1989 and 1990 growing seasons in Urbana, Ill. Eastern black nightshade and black nightshade were transplanted at densities of 0.8, 1.6, 3.2, and 4.8 plants/m2, 5 days after tomatoes were transplanted. These nightshade densities caused significant reductions in soil water content. In 1989, only the highest density of either nightshade species reduced topsoil water content. In 1990, all densities of nightshade, except the two lowest densities of black nightshade, reduced topsoil water content. Eastern black nightshade consistently had a greater effect on tomato yield than black nightshade. Tomato yields averaged over both years were 17,000 and 8,000 kg·ha-1 at the highest (4.8 plants/m*) density of black and eastern black nightshade, respectively. The decrease in soil moisture from high densities of nightshade could not account for the reduced yields.


Weed Science ◽  
1990 ◽  
Vol 38 (4-5) ◽  
pp. 385-388 ◽  
Author(s):  
Frances G. M. Perez ◽  
John B. Masiunas

In replacement experiments in the greenhouse, plant relative yield (PRY) of both eastern black nightshade and tomato increased as the proportion of nightshade plants increased in the pots, indicating that nightshade is less competitive than tomato. In field studies tomato yield was reduced by two-thirds if three nightshade plants m–1of row were allowed to grow with tomato more than 6 weeks following tomato establishment The percent marketable fruit decreased linearly from 73% with no nightshade to 49% when nightshade were present for 12 weeks. When nightshade and tomato were transplanted together, tomato yield was 9000 kg ha–1and 49% of the fruit was marketable, while tomato yields were 30 000 kg ha–1and 70% of the fruit was marketable when nightshade was established 9 weeks after tomato planting.


Weed Science ◽  
1992 ◽  
Vol 40 (2) ◽  
pp. 220-226 ◽  
Author(s):  
Milton E. McGiffen ◽  
John B. Masiunas ◽  
John D. Hesketh

The effect of black and eastern black nightshade on the amount of photosynthetically active radiation (PAR) intercepted by a processing tomato canopy was studied along with the correlation between PAR and tomato growth and yield. During 1989 and 1990, black and eastern black nightshade were established at densities of 0 to 4.8 m−2within rows of transplanted, irrigated processing tomatoes. Increasing the density of either nightshade species decreased the number of tomato fruit; however, eastern black nightshade reduced tomato yield more than black nightshade. Eastern black nightshade was taller than the tomatoes, reducing PAR reaching the top of the tomato canopy. PAR reaching the top of the tomato canopy was positively correlated with yield and negatively correlated with eastern black nightshade density. Eastern black nightshade intraspecific competition decreased both stem and berry weight. Black nightshade was never taller than tomatoes and did not affect PAR reaching the top of the crop canopy. Increasing the density of black nightshade decreased berry dry weight but increased the weight of stems and leaves.


2021 ◽  
Vol 29 (04) ◽  
pp. 94-117
Author(s):  
Pranav Umesh ◽  
◽  
N. Sivakumar ◽  

Purpose: Management philosophy acts as a foundation for business by defining its vision, mission, and purpose and by providing guidelines for its operations. For centuries, Indian ethos has encouraged socially beneficial corporate behavior by invoking the concept of dharma. Using a historical analysis research design, this paper attempts to measure the impact of dharma on management philosophy of modern companies. Methodology: The paper uses a historical analysis research design. The paper specifies the ideal from Vishnu Smriti, a Dharmasastra text of ancient India. The contemporary management thinking is studied by analyzing the management philosophy statements of the fifty corporations comprising the NIFTY index in India. Several data analytics techniques like correlation analysis, association analysis and path analysis, have been used to measure that the impact of dharma on management philosophy. Findings: The study reveals that the impact of dharma on the management philosophy modern corporations is not so strong. The results of correlation analysis, association analysis and path analysis all showed that impact of dharma on the management philosophy of the NIFTY indexed companies is not upto the expected ideal. Practical implications: As the impact of dharma on the management philosophy of modern corporations is not strong, it is necessary for managers to understand the values guidelines provided in dharmashastra texts to develop their vision and mission statements. Such guidelines from Vishnu Smriti include treating employees and customers with respect and cultivate environmentally sustainable management practices. Originality: The originality of the paper arises from its ability to integrate the philosophy of Indian ethos in contemporary management thinking and measuring the same using well known statistical techniques.


Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Susan E. Weaver ◽  
Nancy Smits ◽  
Chin S. Tan

Reductions in yields of processing tomatoes (Lycopersicon esculentumMill. ‘H2653’ and ‘Earlirouge′) caused by interference from eastern black nightshade (Solanum ptycanthumDun. # SOLPT) and hairy nighthsade (S. sarrachoidesSendt. # SOLSA) were estimated for transplanted and seeded tomatoes at two locations in southern Ontario. Tomato yield losses were significantly greater in seeded than in transplanted tomatoes. Stomatal conductance and transpiration rates of seeded tomatoes decreased more rapidly with increased nightshade density than did those of transplanted tomatoes. Percent yield losses also differed between sites. Seeded tomatoes grown at high density in twin rows (33 300 and 45 000 plants/ha) had higher yields and lower percent yield losses than did tomatoes grown at low density in single rows (12 500 to 22 500 plants/ha). Nightshade dry weight and seed production decreased per plant but increased per unit area with increasing nightshade density. Nightshade dry weights and seed production did not vary with site or method of tomato establishment. A hyperbolic model provided an excellent fit to data on both tomato yield losses and nightshade seed production as a function of nightshade density.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1132b-1132
Author(s):  
Milton E. McGiffen ◽  
John B. Masiunas ◽  
Morris G. Huck

Eastern black nightshade (Solanum ptycanthum) and black (Solanum nigrum) nightshade are difficult to control in tomato, interfering with harvest and decreasing fruit quality and yield. In irrigated tomatoes, soil water depletion was greater as nightshade density increased. However, tomato yield loss due to black nightshade was greatest at the lower weed densities. As density increases, photosynthetic activity (photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and stomatal resistance) of black nightshade is more affected than eastern black nightshade. Photosynthetic activity of tomato is the least affected. In greenhouse experiments where water was denied for approximately a week prior to measurement, tomatoes were more sensitive to water stress than were nightshades. Nightshades were more adapted to drought stress than were tomatoes.


1993 ◽  
Vol 118 (1) ◽  
pp. 68-72 ◽  
Author(s):  
J.D. Gaynor ◽  
A.S. Hamill ◽  
D.C. MacTavish

Metolachlor was evaluated for annual grass and eastern black nightshade (Solarium ptycanthum Dun.) control in processing tomato (Lycopersicon esculentum Mill.). Metolachlor applied preplant incorporated provided excellent (> 88%) control of annual grasses and eastern black nightshade. The metolachlor, metribuzin plus trifluralin tank mix applied preplant and incorporated into the soil provided better annual grass and eastern black nightshade control than the metolachlor plus metribuzin tank mix in two of three years. Nonincorporated and posttransplant treatments of metolachlor provided good annual grass control but failed to control eastern black nightshade. Tomato yield in all herbicide treatments was similar to that from hand weeded controls. Metolachlor dissipated from the soil throughout the growing season so that at the time of harvest <10% of that applied was recovered. Metolachlor residues in the fruit were hydrolyzed to deacylated (CGA 37913) or hydrolyzed conjugated (CGA 49751) metolachlor metabolizes. Analyses of extracts from treated fruits were found to be less than the detection limit of 50 ppb in the whole fruit harvested from selected metolachlor treatments. Chemical names used: 2-chloro-N -(2-ethyl-6-methylphenyl)-N -(2-methoxy-1-methylethyl) acetamide (metolachlor); 2,6-dinitro-N,N -dipropyl-4-(trifluromethyl)benzenamine (trifluralin); 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-tlriazin-5(4H)-one (metribuzin); 2-(2-ethyl-6-methylphenyl)amino-1-propanol (CGA 37913); 4-(2-ethyl-6-methylphenyl)-2-hydroxy-5-methyl-3-morphol. inone (CGA 49751).


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2076-2079 ◽  
Author(s):  
Richard G. Greenland ◽  
Kirk A. Howatt

Nightshade species are difficult to control in tomato production and their interference reduces both tomato yield and quality. Rimsulfuron can be used to control nightshades, but species and biotypes vary in their response to rimsulfuron. The objectives of this study were to evaluate control of hairy nightshade (Solanum sarrachoides Sendt.) and eastern black nightshade (Solanum ptycanthum Dun.) by rimsulfuron and compare North Dakota eastern black nightshade accession response to three acetolactate synthase (ALS)-inhibitor herbicides. In field studies conducted at Oakes, N. Dak., rimsulfuron at rates of 26 or 53 g·ha–1 a.i. was applied within 1 week after transplanting tomato (EPOST) or 2 to 4 weeks after transplanting (POST). Rimsulfuron gave excellent control of hairy nightshade when applied POST, and poor to excellent control when applied EPOST, with control being much better when hairy nightshade had emerged before the EPOST application. Rimsulfuron at 53 g·ha–1 provided greater control than at 26 g·ha–1 only for the EPOST applications. Rimsulfuron controlled hairy nightshade which allowed eastern black nightshade (which was not controlled by rimsulfuron) to dominate tomato. Tomato yield was lower when dominated by hairy nightshade than by eastern black nightshade. This was due to the earlier emergence and faster growth of hairy nightshade compared to eastern black nightshade. Tomato yield was higher in the hand-weeded check than for all other treatments in 1999, the only year the hand-weeded check was included in the study. Greenhouse studies on plants grown from seed collected at the experimental site verified that eastern black nightshade was tolerant to rimsulfuron but was controlled by tribenuron and imazethapyr. Rimsulfuron can be used in tomato production to control hairy nightshade, but not the accession of eastern black nightshade found in this study. Chemical names used: N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-3-(ethylsulfonyl)-2-pyridinesulfonamide (rimsulfuron); (α,α,α-trifluoro-2,6-dinitro-N,N dipropyl-p-toluidine) (trifluralin); methyl 2-[[[[(4-methoxy-6-methyl–1,3,5-triazin-2-yl)methylamino]carbonyl]amino]sulfonyl]benzoate (tribenuron methyl); (±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo–1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid (imazethapyr).


Sign in / Sign up

Export Citation Format

Share Document