scholarly journals Genotypic Variation in Abscisic Acid Accumulation, Water Relations, and Gas Exchange for Kentucky Bluegrass Exposed to Drought Stress

2003 ◽  
Vol 128 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang

Drought is a major limiting factor for turfgrass growth. Understanding genetic variations in physiological responses of turfgrass to drought stress would facilitate breeding and management programs to improve drought resistance. This study was designed to evaluate responses of abscisic acid (ABA) accumulation, water relations, and gas exchange to drought stress in four Kentucky bluegrass (Poa pratensis L.) cultivars differing in drought resistance. Plants of `Midnight' and `A82-204' (drought resistant) and `Brilliant' and `RSP' (drought susceptible) were grown under well-watered (control) or drought stress conditions for 25 days in growth chambers. Turf quality, leaf water potential (Ψleaf), relative water content (RWC), leaf net photosynthesis rate (Pn), and stomatal conductance (gs) declined, while electrolyte leakage (EL) increased during drought progression in all cultivars. The magnitudes of the change in these parameters were greater for `RSP' and `Brilliant' than for `Midnight' and `A82-204'. Leaf ABA content in `RSP' and `Brilliant' increased sharply after 2 days of stress to as much as 34 times the control level at 10 days of drought. Leaf ABA content in `Midnight' and `A82-204' also increased with drought, but to a lesser extent than in the other two cultivars. Leaf ABA level was negatively correlated with Ψleaf and gs. `A82-204' had a significantly lower ABA accumulation rate with changes in Ψleaf during drought compared to `Midnight', `RSP' and `Brilliant'; however, no differences in ABA accumulation rate were detected among the latter three cultivars. In addition, leaf gs was more sensitive to changes in ABA accumulation in `Midnight' and `A82-204' than in `RSP' and `Brilliant'. These results demonstrated that drought tolerant cultivars of Kentucky bluegrass were characterized by lower ABA accumulation and less severe decline in Ψleaf, Pn, gs, and turf quality during drought stress than drought sensitive cultivars. Drought tolerance of Kentucky bluegrass could be related to sensitivity of stomata to endogenous accumulation of ABA under drought stress conditions.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shah Saud ◽  
Xin Li ◽  
Yang Chen ◽  
Lu Zhang ◽  
Shah Fahad ◽  
...  

Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensisL.). Drought stress and four levels (0, 200, 400, and 800 mg L−1) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L−1significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.


1997 ◽  
Vol 122 (6) ◽  
pp. 841-848 ◽  
Author(s):  
R. Thomas Fernandez ◽  
Ronald L. Perry ◽  
James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.


2003 ◽  
Vol 128 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang ◽  
Qingzhang Xu

Abscisic acid (ABA) is an important hormone regulating plant response to drought stress. The objective of this study was to investigate effects of exogenous ABA application on turf performance and physiological activities of kentucky bluegrass (Poa pratensis L.) in response to drought stress. Plants of two kentucky bluegrass cultivars, `Brilliant' (drought susceptible) and `Midnight' (drought tolerant), were treated with ABA (100 μm) or water by foliar application and then grown under drought stress (no irrigation) or well-watered (irrigation on alternate days) conditions in a growth chamber. The two cultivars responded similarly to ABA application under both watering regimes. Foliar application of ABA had no effects on turf quality or physiological parameters under well-watered conditions. ABA application, however, helped maintain higher turf quality and delayed the quality decline during drought stress, compared to the untreated control. ABA-treated plants exposed to drought stress had higher cell membrane stability, as indicated by less electrolyte leakage of leaves, and higher photochemical efficiency, expressed as Fv/Fm, compared to untreated plants. Leaf water potential was not significantly affected, whereas leaf turgor pressure increased with ABA application after 9 and 12 d of drought. Osmotic adjustment increased with ABA application, and was sustained for a longer period of drought in `Midnight' than in `Brilliant'. The results suggested that exogenous ABA application improved turf performance during drought in both drought-sensitive and tolerant cultivars of kentucky bluegrass. This positive effect of ABA could be related to increased osmotic adjustment, cell turgor maintenance, and reduced damage to cell membranes and the photosynthetic system.


2008 ◽  
Vol 133 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Stephen E. McCann ◽  
Bingru Huang

The plant growth regulators abscisic acid (ABA) and trinexapac-ethyl (TE) may affect turfgrass responses to drought stress through regulating shoot growth and water relations. The objectives of this study were to investigate the effects of foliar application of TE and ABA on turf growth of two cool-season turfgrass species, Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to examine water relations associated with changes in drought tolerance due to TE or ABA treatment. ‘L-93’ creeping bentgrass and ‘Brilliant’ Kentucky bluegrass plants were foliar sprayed with 0.904 mL·ha−1 a.i. TE five times before exposure to drought or with 6.75 mL/week of ABA at 100 μm before and after exposure to drought in growth chambers. Drought stress was imposed by withholding irrigation until plants were permanently wilted. Foliar application of TE or ABA maintained higher soil volumetric water content, leaf relative water content, and turf quality for a longer period of time during 28 days of stress exposure for Kentucky bluegrass and creeping bentgrass compared with the untreated control. Leaves of TE-treated and ABA-treated plants in both species also had lower ψS at 28 days of drought stress than the untreated control. Creeping bentgrass treated with TE or ABA and Kentucky bluegrass treated with TE exhibited significantly lower shoot vertical growth rates at the initiation of drought stress, but maintained higher growth rates during prolonged drought compared with the untreated control. Turf treated with TE or ABA also showed higher levels of photochemical efficiency than the untreated control for both species. Our results suggest that TE or ABA application could prolong the survival of turfgrass under conditions of drought stress by suppressing shoot vertical growth and lowering water use during the early phase of drought and by sustaining growth and photosynthetic activity during prolonged periods of drought stress through osmotic adjustment for retaining cellular hydration.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang ◽  
Stacy A. Bonos ◽  
William A. Meyer

Drought is a major factor limiting plant growth, which has been associated with the accumulation of absicsic acid (ABA) in various species. The objective of the study was to determine the relationship between ABA accumulation and drought tolerance for kentucky bluegrass (Poa pratensis L.) during short-term drought stress. Eight kentucky bluegrass cultivars (`Midnight', `A82-204', `RSP', `Alpine', `Moonlight', `Brilliant', `Washington', and `Baruzo') were subjected to drought stress in a growth chamber. Water relations, gas exchange rate, and ABA content of leaves were determined at various times during drought stress. Turf quality decreased with drought duration for all eight cultivars. Leaf ABA content increased linearly with drought stress within 11 days of treatment; the rate of the increase was negatively related to the rate of turf quality decline. The rate of ABA accumulation during drought stress was positively correlated with the rates of decrease in turf quality (r2 = 0.6346), increase in electrolyte leakage (r2 = 0.7128), and decrease in relative water content (r2 = 0.5913). There were highly significant negative correlations between ABA content and leaf water potential (r2 = 0.9074), stomatal conductance (r2 = 0.6088), transpiration rate (r2 = 0.6581), net photosynthesis rate (r2 = 0.6956), and a positive correlation between ABA content and electrolyte leakage (r2 = 0.7287). The results indicate that drought tolerance is negatively related to ABA accumulation during shortterm drought stress. ABA accumulation in response to drought stress could be used as a metabolic factor to select for drought tolerance in kentucky bluegrass.


2006 ◽  
Vol 131 (2) ◽  
pp. 295-301 ◽  
Author(s):  
William L. Bauerle ◽  
William W. Inman ◽  
Jerry B. Dudley

Quantitative differences in leaf abscisic acid (ABAL) among four cultivars of red maple (Acer rubrum L.) and one freeman maple (Acer ×freemanii E. Murray) cultivar were investigated. This study tested the hypothesis that ABAL concentration can be used to compare the effects of water stress on the gas exchange response of five different maple genotypes, including four red maple cultivars [`Summer Red', `October Glory', `Autumn Flame', and `Franksred' ('Red Sunset')] and one hybridized freeman maple cultivar ['Jeffersred' ('Autumn Blaze')]. Two-year-old cloned genotypes of red maple and freeman maple were subjected to two treatments: irrigated daily to container capacity or irrigation withheld for one drought and recovery cycle. Leaf abscisic acid concentration, gas exchange, and wholetree sap flow measurements were conducted under well-watered and drought stress conditions. Over the course of the drought stress and recovery phase, net photosynthesis (Anet), stomatal conductance (gs), and transpiration (E) declined as ABAL and instantaneous water use efficiency (A/gs) increased. Until severe water stress conditions were prominent, water use was higher in `Summer Red' as compared to `October Glory'. This study found that ABAL tracked gs and that stomatal responsiveness to substrate moisture deficit is likely mediated by ABA accumulation in leaf tissue. This research demonstrates a leaf level physiological response to substrate volumetric water content that appears to depend on ABAL concentration. In addition, the evidence in this study indicates that ABAL may be used as a potential surrogate for the gs response to substrate water stress and could become part of a cultivar drought tolerance selection strategy for red maple and freeman maple.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Guorui Wang ◽  
Qianjin Zhang ◽  
Xin Zhang ◽  
...  

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3–4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 836G-837
Author(s):  
Douglas D. Archbold ◽  
Lailiang Cheng

Plants of Fragaria chiloensis cv. RCP-37 were grown with their root system split between two separate containers. Water was withheld from one container of each pair (drought side), while the other was subirrigated. Control plants were subirrigated in both containers. Over several days, a drought-side leaf exhibited reductions in stomatal conductance (gs) and transpiration rate (T), while a subirrigated side leaf showed no change in either parameter. However, foliar water relations components (water, osmotic, and pressure potential) did not differ between the two leaves. The leaf on the subirrigated side exhibited gs, T, and water relations components similar to leaves on control plants. The abscisic acid (ABA) content of xylem exudate, collected from a stolon emerging from the axils of the measured leaves, was highest from the drought side and was negatively correlated to gs and T at some sampling dates. A root-derived drought stress signal, perhaps ABA, although other factors cannot be discounted, was limited within the plant to the drought side, even though water relations components indicated that water from the subirrigated side was allocated to all parts of the plant.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 830 ◽  
Author(s):  
Yan Liu ◽  
Xiaoli Wei

Dark septate endophytes (DSEs) are known to help host plants survive drought stress; however, how DSEs enhance host plant drought resistance under water stress conditions remains unclear. The objective of this study was to inoculate Ormosia hosiei seedlings with a DSE strain (Acrocalymma vagum) to investigate the effects of DSE inoculation on root morphology, ultrastructure, and the endogenous hormone content under drought stress conditions and to elucidate the drought resistance mechanism involved in the DSE–host-plant association. The inoculated seedlings were grown under three different soil water conditions (well watered—75% field water capacity, moderate water—55% field water capacity, or low water—35% field water capacity) for 114 days. Fresh root weight, root volume, root surface area, root fork, and root tip number were significantly higher in inoculated seedlings than in noninoculated seedlings. Furthermore, the root architecture of the inoculated seedlings changed from herringbone branching to dichotomous branching. Mitochondria and other organelles in root cells of inoculated seedlings remained largely undamaged under water stress, whereas organelles in root cells of noninoculated seedlings were severely damaged. The abscisic acid (ABA) and indole-3-acetic acid (IAA) content and IAA/ABA ratio of inoculated seedlings were significantly higher than those of noninoculated seedlings, whereas the content of gibberellic acid (GA) and the ratios of GA/ABA, zeatin riboside (ZR)/ABA, and ZR/IAA in inoculated seedlings were lower than those of noninoculated seedlings. DSE inoculation could help plants adapt to a drought stress environment by altering root morphology, reducing ultrastructural damage, and influencing the balance of endogenous hormones, which could be of great significance for the cultivation and preservation of the O. hosiei tree.


2019 ◽  
Vol 40 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Qing Fang ◽  
Xianqiang Wang ◽  
Haiyang Wang ◽  
Xiaowen Tang ◽  
Chi Liu ◽  
...  

Abstract In plants, R2R3 MYB transcription factors (TFs) consist of one large gene family and are involved in the regulation of many developmental processes and various stresses. However, the functions of most of MYB TFs in woody plants remain unknown. Here, PtrMYB94, an R2R3 MYB TF from Populus trichocarpa, is characterized to be involved in the regulation of drought responses and abscisic acid (ABA) signaling. PtrMYB94 encodes a nuclear-localized R2R3 MYB TF. RT-PCR results showed that the PtrMYB94 transcripts were relatively abundant in leaves and stems, and were induced rapidly in response to dehydration stress. Overexpression of PtrMYB94 improved plant drought responses, suggesting that this MYB TF may functionally regulate poplar adaptability to drought stress. Furthermore, the analysis of transcriptional expression and PtrMYB94 promoter: GUS activity showed that PtrMYB94 responded to ABA induction. PtrMYB94-overexpressing plants exhibited the inhibition of seed germination compared with the wild-type (WT) control under ABA exposure condition. The ABA content was evidently increased in the PtrMYB94-overexpressing plants relative to the WT plants. In addition, transcript levels of several ABA- and drought-responsive genes, such as ABA1 and DREB2B, were up-regulated. Taken together, our results suggest that PtrMYB94 is involved in an ABA-dependent drought stress regulation in Populus.


Sign in / Sign up

Export Citation Format

Share Document