scholarly journals Drought Responses of Kentucky Bluegrass and Creeping Bentgrass as Affected by Abscisic Acid and Trinexapac-ethyl

2008 ◽  
Vol 133 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Stephen E. McCann ◽  
Bingru Huang

The plant growth regulators abscisic acid (ABA) and trinexapac-ethyl (TE) may affect turfgrass responses to drought stress through regulating shoot growth and water relations. The objectives of this study were to investigate the effects of foliar application of TE and ABA on turf growth of two cool-season turfgrass species, Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to examine water relations associated with changes in drought tolerance due to TE or ABA treatment. ‘L-93’ creeping bentgrass and ‘Brilliant’ Kentucky bluegrass plants were foliar sprayed with 0.904 mL·ha−1 a.i. TE five times before exposure to drought or with 6.75 mL/week of ABA at 100 μm before and after exposure to drought in growth chambers. Drought stress was imposed by withholding irrigation until plants were permanently wilted. Foliar application of TE or ABA maintained higher soil volumetric water content, leaf relative water content, and turf quality for a longer period of time during 28 days of stress exposure for Kentucky bluegrass and creeping bentgrass compared with the untreated control. Leaves of TE-treated and ABA-treated plants in both species also had lower ψS at 28 days of drought stress than the untreated control. Creeping bentgrass treated with TE or ABA and Kentucky bluegrass treated with TE exhibited significantly lower shoot vertical growth rates at the initiation of drought stress, but maintained higher growth rates during prolonged drought compared with the untreated control. Turf treated with TE or ABA also showed higher levels of photochemical efficiency than the untreated control for both species. Our results suggest that TE or ABA application could prolong the survival of turfgrass under conditions of drought stress by suppressing shoot vertical growth and lowering water use during the early phase of drought and by sustaining growth and photosynthetic activity during prolonged periods of drought stress through osmotic adjustment for retaining cellular hydration.

2003 ◽  
Vol 128 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang ◽  
Qingzhang Xu

Abscisic acid (ABA) is an important hormone regulating plant response to drought stress. The objective of this study was to investigate effects of exogenous ABA application on turf performance and physiological activities of kentucky bluegrass (Poa pratensis L.) in response to drought stress. Plants of two kentucky bluegrass cultivars, `Brilliant' (drought susceptible) and `Midnight' (drought tolerant), were treated with ABA (100 μm) or water by foliar application and then grown under drought stress (no irrigation) or well-watered (irrigation on alternate days) conditions in a growth chamber. The two cultivars responded similarly to ABA application under both watering regimes. Foliar application of ABA had no effects on turf quality or physiological parameters under well-watered conditions. ABA application, however, helped maintain higher turf quality and delayed the quality decline during drought stress, compared to the untreated control. ABA-treated plants exposed to drought stress had higher cell membrane stability, as indicated by less electrolyte leakage of leaves, and higher photochemical efficiency, expressed as Fv/Fm, compared to untreated plants. Leaf water potential was not significantly affected, whereas leaf turgor pressure increased with ABA application after 9 and 12 d of drought. Osmotic adjustment increased with ABA application, and was sustained for a longer period of drought in `Midnight' than in `Brilliant'. The results suggested that exogenous ABA application improved turf performance during drought in both drought-sensitive and tolerant cultivars of kentucky bluegrass. This positive effect of ABA could be related to increased osmotic adjustment, cell turgor maintenance, and reduced damage to cell membranes and the photosynthetic system.


2003 ◽  
Vol 128 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang

Drought is a major limiting factor for turfgrass growth. Understanding genetic variations in physiological responses of turfgrass to drought stress would facilitate breeding and management programs to improve drought resistance. This study was designed to evaluate responses of abscisic acid (ABA) accumulation, water relations, and gas exchange to drought stress in four Kentucky bluegrass (Poa pratensis L.) cultivars differing in drought resistance. Plants of `Midnight' and `A82-204' (drought resistant) and `Brilliant' and `RSP' (drought susceptible) were grown under well-watered (control) or drought stress conditions for 25 days in growth chambers. Turf quality, leaf water potential (Ψleaf), relative water content (RWC), leaf net photosynthesis rate (Pn), and stomatal conductance (gs) declined, while electrolyte leakage (EL) increased during drought progression in all cultivars. The magnitudes of the change in these parameters were greater for `RSP' and `Brilliant' than for `Midnight' and `A82-204'. Leaf ABA content in `RSP' and `Brilliant' increased sharply after 2 days of stress to as much as 34 times the control level at 10 days of drought. Leaf ABA content in `Midnight' and `A82-204' also increased with drought, but to a lesser extent than in the other two cultivars. Leaf ABA level was negatively correlated with Ψleaf and gs. `A82-204' had a significantly lower ABA accumulation rate with changes in Ψleaf during drought compared to `Midnight', `RSP' and `Brilliant'; however, no differences in ABA accumulation rate were detected among the latter three cultivars. In addition, leaf gs was more sensitive to changes in ABA accumulation in `Midnight' and `A82-204' than in `RSP' and `Brilliant'. These results demonstrated that drought tolerant cultivars of Kentucky bluegrass were characterized by lower ABA accumulation and less severe decline in Ψleaf, Pn, gs, and turf quality during drought stress than drought sensitive cultivars. Drought tolerance of Kentucky bluegrass could be related to sensitivity of stomata to endogenous accumulation of ABA under drought stress conditions.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Diana Saja-Garbarz ◽  
Agnieszka Ostrowska ◽  
Katarzyna Kaczanowska ◽  
Franciszek Janowiak

The aim of this study was to investigate the accumulation of silicon in oilseed rape and to characterize the changes in chosen water balance parameters in response to drought. The following parameters were estimated: water content, osmotic and water potential, evapotranspiration, stomatal conductance and abscisic acid level under optimal and drought conditions. It was shown that oilseed rape plants accumulate silicon after its supplementation to the soil, both in the case of silicon alone and silicon together with iron. It was revealed that silicon (without iron) helps maintain constant water content under optimal conditions. While no silicon influence on osmotic regulation was observed, a transpiration decrease was detected under optimal conditions after silicon application. Under drought, a reduction in stomatal conductance was observed, but it was similar for all plants. The decrease in leaf water content under drought was accompanied by a significant increase in abscisic acid content in leaves of control plants and those treated with silicon together with iron. To sum up, under certain conditions, silicon is accumulated even in non-accumulator species, such as oilseed rape, and presumably improves water uptake under drought stress.


2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


1997 ◽  
Vol 24 (1) ◽  
pp. 19-24 ◽  
Author(s):  
P. J. Sexton ◽  
J. M. Bennett ◽  
K. J. Boote

Abstract Peanut (Arachis hypogaea L.) fruit growth is sensitive to surface soil (0-5 cm) conditions due to its subterranean fruiting habit. This study was conducted to determine the effect of soil water content in the pegging zone (0-5 cm) on peanut pod growth rate and development. A pegging-pan-root-tube apparatus was used to separately control soil water content in the pegging and root zone for greenhouse trials. A field study also was conducted using portable rainout shelters to create a soil water deficit. Pod phenology, pod and seed growth rates, and final pod and seed dry weights were determined. In greenhouse studies, dry pegging zone soil delayed pod and seed development. In the field, soil water deficits in the pegging and root zone decreased pod and seed growth rates by approximately 30% and decreased weight per seed from 563 to 428 mg. Pegs initiating growth during drought stress demonstrated an ability to suspend development during the period of soil water deficit and to re-initiate pod development after the drought stress was relieved.


2020 ◽  
Vol 71 (9) ◽  
pp. 2713-2722 ◽  
Author(s):  
Haicui Xie ◽  
Jianqin Shi ◽  
Fengyu Shi ◽  
Haiyun Xu ◽  
Kanglai He ◽  
...  

Abstract Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant–insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shah Saud ◽  
Xin Li ◽  
Yang Chen ◽  
Lu Zhang ◽  
Shah Fahad ◽  
...  

Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensisL.). Drought stress and four levels (0, 200, 400, and 800 mg L−1) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L−1significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.


1997 ◽  
Vol 122 (6) ◽  
pp. 841-848 ◽  
Author(s):  
R. Thomas Fernandez ◽  
Ronald L. Perry ◽  
James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.


2007 ◽  
Vol 132 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Michelle DaCosta ◽  
Bingru Huang

Abscisic acid (ABA) and cytokinins are two groups of plant hormones that play important roles in regulating plant responses to decreases in soil water availability. The primary objective for this study was to determine whether species variability in drought survival and recovery for colonial bentgrass (Agrostis capillaris L.), creeping bentgrass (A. stolonifera L.), and velvet bentgrass (A. canina L.) were related to changes in ABA and cytokinin content. Plants of ‘Tiger II’ colonial bentgrass, ‘L-93’ creeping bentgrass, and ‘Greenwich’ velvet bentgrass were subjected to two soil moisture treatments: 1) well-watered controls, irrigated three times per week; and 2) drought, irrigation completely withheld for 16 days. For recovery, previously drought-stressed plants were rewatered and irrigated three times per week to evaluate the recovery potential for each species. Drought stress resulted in significant declines in turf quality (TQ), shoot extension rates, canopy net photosynthetic rate (Pn), daily evapotranspiration rate (ET), and cytokinin content, and significant increases in ABA content for all three bentgrass species. Velvet bentgrass exhibited less severe drought injury, as exhibited by higher TQ, Pn, and daily ET rate compared with colonial bentgrass and creeping bentgrass. Velvet bentgrass also had significantly less ABA accumulation, which could allow for continued gas exchange and sustained plant survival during drought stress compared with colonial bentgrass and creeping bentgrass. Upon rewatering after drought stress, colonial bentgrass exhibited more rapid recovery in turfgrass growth and water use compared with creeping bentgrass and velvet bentgrass. The higher recuperative ability of colonial bentgrass could be associated with its more rapid decline in ABA content and increases in cytokinin content compared with creeping bentgrass and velvet bentgrass.


Sign in / Sign up

Export Citation Format

Share Document