scholarly journals Optimum Plot Size and Number of Replications with Short-day Onions for Yield, Seedstem Formation, Number of Doubles, and Incidence of Foliar Diseases

2003 ◽  
Vol 128 (3) ◽  
pp. 409-424 ◽  
Author(s):  
George E. Boyhan ◽  
David B. Langston ◽  
Albert C. Purvis ◽  
C. Randell Hill

Five different statistical methods were used to estimate optimum plot size and three different methods were used to estimate optimum number of replications with short-day onions (Allium cepa L.) for yield, seedstem formation (bolting), purple blotch and/or Stemphylium (PB/S), botrytis leaf blight (BLB), and bulb doubling with a basic plot size unit of 1.5 × 1.8 m (length × width). Methods included Bartlett's test for homogeneity of variance, computed lsd values, maximum curvature of coefficient of variation plotted against plot size, Hatheway's method for a true mean difference, and Cochran and Cox's method for detecting a percent mean difference. Bartlett's chi-square was better at determining optimum plot size with transformed count and percent data compared with yield data in these experiments. Optimum plot size for yield of five basic units (7.5 m length) and four replications is indicated using computed lsd values where the lsd is <5% of the average for that plot size, which was the case in both years of this study. Based on all the methods used for yield, a plot size of four to five basic units and three to five replications is appropriate. For seedstems using computed lsd values, an optimum plot size of four basic units (6 m length) and two replications is indicated. For PB/S two basic units (3 m length) plot size with four replications is indicated by computed lsd values. For BLB a plot size of four basic units (6 m length) and three replications is optimum based on computed lsd values. Optimum plot size and number of replications for estimating bulb doubling was four basic units (6 m length) and two replications with `Southern Belle', a cultivar with a high incidence of doubling using computed lsd values. With `Sweet Vidalia', a cultivar with low incidence of bulb doubling, a plot size of four basic units (6 m length) and five replications is recommended by computed lsd values. Visualizing maximum curvature between coefficient of variation and plot size suggests plot sizes of seven to eight basic units (10.5 to 12 m length) for yield, 10 basic units (15 m length) for seedstems, five basic units (7.5 m length) for PB/S and BLB, five basic units (7.5 m length) for `Southern Belle' doubling, and 10 basic units (15 m length) for `Sweet Vidalia' doubling. A number of plot size-replication combinations were optimum for the parameters tested with Hatheway's and Cochran and Cox's methods. Cochran and Cox's method generally indicated a smaller plot size and number of replications compared to Hatheway's method regardless of the parameter under consideration. Overall, both Hatheway's method and computed lsd values appear to give reasonable results regardless of data (i.e., yield, seedstems, diseases etc.) Finally, it should be noted that the size of the initial basic unit will have a strong influence on the appropriate plot size.

MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 67-74
Author(s):  
MUJAHID KHAN ◽  
R. C. HASIJA ◽  
NITIN TANWAR

The most obvious use of uniformity trial data is to provide information on the most suitable size and shape of plots, in which the field was planted to a single variety and harvested as small plots. Indian mustard (Brassica juncea L.) cultivar RH-749 was grown using uniform crop improvement practices during rabi season of 2013-14 at Research Farm of Oilseed section, Department of Genetics and Plant Breeding, CCSHAU, Hisar, Haryana state, India, to estimate optimum plot size and shape using yield data of the 48 m × 48 m (2304 basic units) recorded separately from each basic unit of 1 m × 1 m. The variability among plots of different sizes and shapes was determined by calculating coefficient of variation. It was observed that the coefficient of variation decreases as the plot size increases in case of both the directions i.e., when plots were elongated in N-S direction (88 per cent decrease) or elongated in E-W direction         (93 per cent decrease). Further it was observed that long and narrow plots elongated in E-W direction were more useful than the compact and square plots in controlling the soil heterogeneity. Based on the maximum curvature method the optimum plot size for yield trial was estimated to be 5 m2 with rectangular shape.  


2005 ◽  
Vol 62 (6) ◽  
pp. 585-589 ◽  
Author(s):  
Sérgio José Ribeiro de Oliveira ◽  
Lindolfo Storck ◽  
Sidinei José Lopes ◽  
Alessandro Dal'Col Lúcio ◽  
Sandra Feijó ◽  
...  

Quality of field experiments data dependent upon adequate experimental design. This study investigated the relationship between the size of the basic unit for exploratory experiments and the optimum plot size, and the experiment precision with potato crop. Tuber yield of 24 rows, 144 mounds, were used to arrange experimental units of one, two, three, four, six, eight and 12 mounds. Tuber yield data of different mounds were used to arrange plot sizes with different numbers of basic units. The model CV(x)=A/X B was adjusted, in which CV(x) was the coefficient of variation among plots with different numbers of basic units. Optimum plot size was estimated with the modified maximum curvature method of the function CV(x)=A/X B, allowing completely random design. Experimental precision was estimated though the Hatheway method for different experimental arrangements. Based upon the modification of the maximum curvature method, for a fixed total experimental area, experimental unit size of potato initial experiments affects optimum plot size estimations with the same experimental precision and variable number of treatments.


2019 ◽  
Vol 49 (5) ◽  
Author(s):  
Willerson Custódio da Silva ◽  
Mário Puiatti ◽  
Paulo Roberto Cecon ◽  
Leandro Roberto de Macedo ◽  
Tocio Sediyama

ABSTRACT: Taro is a tropical tuberous vegetable that produces cormels of high nutritional and energetic value. In recent years, its cultivation has expanded, creating the need for more research. However, the experimental plot size interferes directly with the precision of the experiment.Literature describes several methods for establishing the optimum experimental plot size. The objective of the current research was to estimate the optimal experimental plot size for taro culture, utilizing the Modified Maximum Curvature Method. The field experiment was conducted in the vegetable garden of the Departamentode Fitotecnia of Universidade Federal de Viçosa, from September 2011 to June 2012, with Japanese taro. Twenty-two rows with 20 plants each were planted, at 1.0×0.3 m spacing, considering the 20 central rows with 18 plants each as useful area, totaling 360 plants. Each plant corresponded to a basic unit (BU). Once the possible clusters were made, 23 different plot sizes were formed. At harvest, the fresh mass characteristics of large, medium, and marketable cormels were evaluated. The optimum plot sizes were: 8.77 BU for marketable cormels; 14.75 BU for large cormels, and 13.37 BU for medium cormels. Among the plot sizes estimated in this study, the aim was to improve precision of experiments performed with taro, plots formed by 15 BU that corresponded to a 4.5 m2 area are recommended.


2017 ◽  
Vol 10 (1) ◽  
pp. 122 ◽  
Author(s):  
Gabriela Görgen Chaves ◽  
Alberto Cargnelutti Filho ◽  
Cláudia Marques de Bem ◽  
Cirineu Tolfo Bandeira ◽  
Daniela Lixinski Silveira ◽  
...  

The objectives of this study were to determine the optimum plot size (Xo) and the number of replications to evaluate the grains yield of rye (Secale cereale L.) and investigate the variability of Xo between two cultivars and three sowing dates. Eighteen uniformity trials were conducted with rye. The Xo was determined by the method of maximum curvature of the coefficient of variation model. The number of repetitions was determined in scenarios formed by combinations of i treatments (i = 3, 4, ... 50) and d minimum differences between means of treatments to be detected as significant at 0.05 of probability, by Tukey test, expressed in percentage of the average of the experiment (d = 10, 12, ... 30%). There is variability in optimum plot size to evaluate the grains yield among the cultivars BRS Progresso and Temprano and among sowing dates in the rye crop. The optimum plot size to evaluate the grains yield of rye is 6.08 m2. Seven replicates are sufficient to evaluate the grains yield of rye in experiments with up to 50 treatments, and identify, as significant at 5% probability by Tukey test, differences among averages of treatments of 29.65% of the mean of the experiment in designs completely randomized and randomized block.


2019 ◽  
Vol 11 (14) ◽  
pp. 205 ◽  
Author(s):  
Bruno V. C. Guimarães ◽  
Sérgio L. R. Donato ◽  
Ignacio Aspiazú ◽  
Alcinei M. Azevedo ◽  
Abner J. de Carvalho

The optimum plot size for &lsquo;Gigante&rsquo; cactus pear can be estimated by several methods; thus, ultimately aiming for efficiency, simple use and high precision, the objective of this study was to compare methods for estimating plot sizes: modified maximum curvature method, Hatheway&rsquo;s convenient plot size method, linear and quadratic response plateau models, and comparison of variances method for evaluating phenotypic characteristics in experiments with &lsquo;Gigante&rsquo; cactus pear. Plot sizes were estimated by conducting a uniformity trial. Estimated optimum plot sizes varied with the method and vegetative characteristic. The quadratic response plateau regression estimated the largest plot sizes, whereas Hatheway&rsquo;s method estimated the smallest plot sizes. Comparison of variances method estimated intermediate plot sizes in comparison with the other methods for most measured characteristics. Plots sizes estimated by modified maximum curvature method are more consistent with results reported by studies on &lsquo;Gigante&rsquo; cactus pear. 10 basic unit plot sizes estimated by the linear response plateau model can be used with high precision and practical feasibility for growing cactus pear, thereby improving the use of resources.


2020 ◽  
Vol 9 (11) ◽  
pp. e2239119744
Author(s):  
Vinicius de Freitas Mateus ◽  
Gisele Rodriguês Moreira ◽  
Mario Euclides Pechara da Costa Jaeggi ◽  
Richardson Sales Rocha ◽  
Rita de Kássia Guarnier da Silva ◽  
...  

Among the factors that influence the detection of minimum significant differences between treatments in conventional experiments is the size of the plot, whose correct determination allows the reduction of experimental error, consequently, increases the precision of the experiment and the reliability of the interpretations and conclusions obtained. There are different methods to estimate the optimal plot size, which relate plot size and residual variation, highlighting among these the methods of maximum curvature, maximum modified curvature, maximum curvature of the coefficient of variation and regression with plateau response. In addition to these, there is the Hatheway method that takes into account factors such as number of treatments, repetitions and levels of significance. Since there is little work to estimate the optimal plot size in experiments with species of the genus Brassica, the present study aimed to increase the experimental precision in experiments with cabbage in the municipality of Alegre - ES by determining the optimal plot size with based on Hatheway's methods, maximum curvature, maximum curvature of the coefficient of variation and plateau regression. The work was carried out by means of a blank test carried out in the experimental area of the Center for Agricultural Sciences of the Federal University of Espírito Santo, Alegre - ES, in which both productive and growth variables were evaluated. At the end of the project, propose the optimal plot size to be used in experiments with cabbage in order to increase the experimental precision and the reliability of the results obtained in future experiments.


2020 ◽  
Vol 50 (11) ◽  
Author(s):  
Marcos Toebe ◽  
Alberto Cargnelutti Filho ◽  
Anderson Chuquel Mello ◽  
Rafael Rodrigues de Souza ◽  
Franciéle dos Santos Soares ◽  
...  

ABSTRACT: The hybridization between wheat and rye crops resulted in the triticale crop, which presents rusticity, versatility in animal and human food and possibility of use as a cover plant. The objective of this research was to determine the optimal plot size and the replications number to evaluate the fresh weight of triticale in two evaluation moments. An experiment was carried out with the triticale cultivar IPR111. The experimental area was divided into 48 uniformity trials, each containing 36 basic experimental units of 0.51 m2. The fresh weight was evaluated in 24 uniformity trials at 99 days after sowing (DAS) and in 24 uniformity trials at 127 DAS. The optimal plot size was determined by the method of the maximum curvature of the coefficient of variation and the replications number was determined in scenarios of treatments number and differences between means to be detected as significant by Tukey test. To determine the fresh weight of triticale, the optimal plot size is 3.12 m2, with coefficient of variation of 13.69%. Six replications are sufficient to identify as significant, differences between treatment means of 25% for experiments with up to seven treatments and of 30% for experiments with up to 28 treatments, regardless of the experimental design.


2020 ◽  
Vol 41 (3) ◽  
pp. 783
Author(s):  
Alberto Cargnelutti Filho ◽  
Cirineu Tolfo Bandeira ◽  
Gabriela Görgen Chaves ◽  
Jéssica Andiara Kleinpaul ◽  
Rafael Vieira Pezzini ◽  
...  

The aim of this study was to determine the optimal plot size and the number of replications to evaluate fresh weight in Sudan grass [Sorghum sudanense (Piper) Stapf.]. Twenty-six uniformity trials were carried out in two cultivars (BRS Estribo and CG Farrapo), in four sowing seasons (20 Dec, 20 Jan, 7 Feb and 24 Feb) and two methods for evaluating fresh weight (cutting and at flowering). The fresh weight was evaluated in 936 basic experimental units (BEU) (26 trials × 36 BEU per trial). One BEU comprised three rows of plants, 1 m in length (1.2 m2). The optimal plot size was determined using the maximum curvature method of the model of the coefficient of variation. For experiments in a completely randomised or randomised block design, in combinations of number of treatments and levels of experimental precision, the number of replications was determined by an iterative process. The optimal plot size to evaluate fresh weight in Sudan grass is 7.95 m2. Eight replications, to evaluate up to 50 treatments in a completely randomised or randomised block design, are sufficient to identify as significant at 0.05% probability by Tukey’s test, differences between the mean value of each treatment of 30.2% of the mean value of the experiment.


2019 ◽  
Vol 49 (9) ◽  
Author(s):  
Mauricio dos Santos da Silva ◽  
Sebastião de Oliveira e Silva ◽  
Sérgio Luiz Rodrigues Donato ◽  
Orlando Melo Sampaio Filho ◽  
Gilmara de Melo Araújo Silva

ABSTRACT: This study aimed to evaluate the optimum plot size for the papaya crop by using the modified maximum curvature method under soil and climatic conditions of the Recôncavo Baiano. The experiment comprised a uniformity test using the CNPMF-L78 strain developed by Embrapa Mandioca and Fruticultura, planted at a spacing of 3 m x 2 m, with 16 central rows and 22 plants per row, totaling 352 plants and an area of 2,112 m2. The following parameters were evaluated: plant height and diameter; height of insertion of the first fruits; precocity; number of commercial fruits per plant; productivity; length, diameter, weight, firmness, internal cavity diameter, pulp thickness, and soluble fruit solids. Each plant was considered as a basic unit, with an area of 6 m2, thus making up 352 basic units whose adjacent units were combined to form 11 pre-established parcel arrangements with rectangular and row formats. The optimal plot size is seven plants perpendicular to the crop rows, that is, seven rows with one plant in each row, corresponding to the area of 42 m2, considering spacing of 3 m between rows and 2 m between papaya plants in the soil and climatic conditions of the Recôncavo Baiano.


2015 ◽  
Vol 33 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Diogo V Schwertner ◽  
Alessandro D Lúcio ◽  
Alberto Cargnelutti Filho

The aim of this work was to determine the uniformity trial size for estimating the optimum plot size in order to evaluate the fruit mass of tomato, snap-beans and zucchini. The mass of fruits was evaluated in uniformity trials with tomato grown in plastic tunnel in spring-summer and autumn-winter seasons, with snap-beans in plastic greenhouse in autumn-winter season and, with zucchini in plastic greenhouse in summer-autumn and winter-spring seasons. These data were used for planning different sizes of uniformity trials and resampling with replacement was used to estimate the optimum plot size by the method of maximum curvature of the coefficient of variation model. The size of uniformity trials influences the estimation of the optimum plot size for evaluating the mass of fruits of tomato, snap-beans and zucchini. Uniformity trials with tomato with 12 basic experimental units (12 plants) and with snap-beans with 21 basic experimental units (42 plants) are enough for estimating the optimum plot size for evaluating the mass of fruits in plastic tunnel with a confidence interval of 95% minor or equal to two basic experimental units. Uniformity trials with snap-beans with 18 basic experimental units (36 plants) and with zucchini with ten basic experimental units (ten plants) in plastic greenhouse are enough for estimating the optimum plot size for evaluating the mass of fruits with a confidence interval of 95% minor or equal to three basic experimental units.


Sign in / Sign up

Export Citation Format

Share Document