scholarly journals Concentration Dependence of `Redchief Delicious' Apple Fruit Softening and Chlorophyll Fluorescence to Repeated Doses of 1-Methylcyclopropene

2004 ◽  
Vol 129 (5) ◽  
pp. 760-765 ◽  
Author(s):  
Sastry S. Jayanty ◽  
Mauricio Cañoles ◽  
Randolph M. Beaudry

We studied the dose-response of `Redchief Delicious' apple [Malus sylvestris (L) Mill. var. domestica (Borkh.) Mansf.] fruit to repeated (weekly) dosages of 0.0, 0.02, 0.1, and 1.0 μL·L-1 1-methylcyclopropene (1-MCP) by measuring fruit firmness and chlorophyll fluorescence throughout an extended storage period at 0, 5, 10, 15, and 20 °C. The rate of firmness loss for nontreated fruit increased with increasing temperature. 1-MCP applied at concentrations of 0.1 and 1.0 μL·L-1 slowed firmness loss. The 1-MCP dose-response curve for the rate of firmness loss was essentially the same for all five temperatures. A concentration of 1.0 μL·L-1 1-MCP prevented firmness loss at all temperatures for the duration of the study; however, after holding fruit for an additional 7 days at room temperature, the fruit stored at 10 °C softened with increasing storage duration, whereas fruit at stored at higher and lower temperatures did not. The influence of 1-MCP on chlorophyll fluorescence (Fo and Fm) was markedly affected by temperature; Fo increased during storage at higher storage temperatures and this increase was enhanced by 1-MCP. Conversely, Fm decreased during storage and the rate of decline was much greater at the higher storage temperatures; the rate of decline was reduced by 1-MCP, but only at the higher storage temperatures. Photochemical efficiency (Fv/Fm) of nontreated fruit declined with time for all storage temperatures. Treatment with 0.1 and 1.0 μL·L-1 1-MCP only marginally reduced the rate of decline of photochemical efficiency. Sample loss due to decay increased with temperature, but was reduced by 1-MCP at all temperatures.

2001 ◽  
Vol 126 (5) ◽  
pp. 618-624 ◽  
Author(s):  
Nazir A. Mir ◽  
Erin Curell ◽  
Najma Khan ◽  
Melissa Whitaker ◽  
Randolph M. Beaudry

Fruit of `Redchief Delicious' apple [Malus sylvestris (L) Mill. var. domestica (Borkh.) Mansf.] were harvested 1 week before the climacteric (harvest 1), at the onset of the climacteric (harvest 2), and 1 week after the onset of the climacteric (harvest 3). Fruit were stored at 0, 5, 10, 15, or 20 °C and were treated with 0.7 μL·L-1 1-MCP on a once-per-week, once-per-2-week, once-per-month, and once-per-year basis or were left nontreated. The initial 1-MCP treatment was at 20 °C and subsequent applications were at storage temperatures. The compound slowed softening at all temperatures relative to nontreated fruit, however as temperature decreased, the benefits of 1-MCP application became less pronounced. Effectiveness of 1-MCP declined slightly as harvest maturity increased. Efficacy of 1-MCP treatment increased with greater frequency of application at 5, 10, 15, and 20 °C, but not at 0 °C. Fruit stored without refrigeration (20 °C) for more than 100 days did not soften significantly when treated once per week with 1-MCP. However, decay was a significant problem for treated and nontreated fruit stored at temperatures >5 °C; 1-MCP application reduced, but did not prevent decay. Rate of decline in titratable acidity increased with storage temperature and 1-MCP had no significant effect on retarding the decline in acid content. Minimal (Fo) and maximal (Fm) chlorophyll fluorescence was altered markedly by 1-MCP application, but the ratio of (Fm-Fo)/Fm was only slightly affected. The most effective 1-MCP treatment frequency was once per week and, at all elevated temperatures (5, 10, 15, and 20 °C), slowed loss of firmness to a greater extent than refrigeration (0 °C) alone. Application of 1-MCP resulted in greater retention of firmness than controlled atmosphere (CA) with O2 and CO2 at 1.5 kPa and 3 kPa, respectively. Data suggest that 1-MCP application, has the potential to reduce reliance on refrigeration and CA storage for maintaining firmness of `Redchief Delicious' apple, especially for relatively short storage durations (<50 days) when fruit are harvested within a week of the ethylene climacteric. Chemical name used: 1-methylcyclopropene (1-MCP).


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 891-896 ◽  
Author(s):  
Jun Song ◽  
Weimin Deng ◽  
Randolph M. Beaudry ◽  
Paul R. Armstrong

Trends in chlorophyll fluorescence for `Starking Delicious', `Golden Delicious' and `Law Rome' apple (Malus ×domestica Borkh.) fruit were examined during the harvest season, during refrigerated-air (RA) storage at 0 °C, following RA and controlled-atmosphere (CA) storage, and during a poststorage holding period at 22 °C. Fluorescence parameters of minimal fluorescence (Fo), maximal fluorescence (Fm), and quantum yield [(Fm-Fo)/Fm, otherwise denoted as Fv/Fm] were measured. During `Starking Delicious' fruit maturation and ripening, Fv/Fm declined with time, with the rate of decline increasing after the ethylene climacteric. During RA storage, all fluorescence parameters remained constant for approximately 2 weeks, then steadily declined with time for `Starking Delicious' fruit. Superficial scald was detected after Fv/Fm had declined from an initial value of 0.78 to ≈0.7. Fv/Fm was consistently higher for CA-stored fruits than for RA-stored fruits. We were able to resegregate combined populations of “high-quality” (CA) and “low-quality” (RA) `Law Rome' fruit with 75% accuracy using a threshold Fv/Fm value of 0.685, with only 5% RA-stored fruit incorrectly identified as being of high quality. During a poststorage holding period, Fo, Fm, and Fv/Fm correlated well with firmness for `Starking Delicious', but not for `Golden Delicious' fruit, which were already soft. Fo and Fm were linearly correlated with hue angle for 'Golden Delicious' fruit, decreasing as yellowness increased. The accuracy, speed of assessment, and light-based nature of fluorescence suggests that it may have some practical use as a criterion to assist in sorting apple or other chlorophyll-containing fruit or vegetables on commercial packing lines.


2000 ◽  
Vol 40 (8) ◽  
pp. 1151 ◽  
Author(s):  
J. H. Miranda ◽  
D. C. Joyce ◽  
S. E. Hetherington ◽  
P. N. Jones

Effects on vase life and chlorophyll fluorescence were evaluated for kangaroo paw Bush Dawn flowers harvested from 3 growth environments and kept at 3 storage temperatures for 4 storage periods. Flowers were grown in a glasshouse, shadehouse and in the open. Harvested flowers were stored at 0, 7.5 or 13°C for 1, 2, 3 or 4 weeks. Minimum fluorescence values decreased progressively from 0.103 to 0.078 as storage temperatures increased from 0 to 13°C. Relative fluorescence ratios of stored kangaroo paw flowers were altered significantly in response to storage temperature, storage duration and growth environment. Relative fluorescence ratios decreased progressively from 0.778 to 0.649 with increasing storage duration from 1 to 4 weeks. Relative fluorescence values were 0.688, 0.784 and 0.711 for 0, 7.5 and 13°C storage temperatures, respectively. Minimum fluorescence did not differ among the growth environments, but relative fluorescence was highest for the shadehouse (0.760) and lowest for the open (0.695). Vase life was also influenced by storage temperature, storage duration and flower source. Main effect vase lives of flowers were 6.6, 7.2 and 3.4 days for 0, 7.5 and 13°C storage temperatures, respectively. Shorter vase life after storage at 0 than at 7.5°C indicates that Bush Dawn is chilling sensitive. Post-storage longevity of flowers from the shadehouse (6.5 days) and glasshouse (6.3 days) was greater than from the open (4.2 days). Relative fluorescence values, which decreased in a linear manner for all storage temperatures as storage duration increased, were significantly correlated with the vase life.


1964 ◽  
Vol 44 (2) ◽  
pp. 188-194 ◽  
Author(s):  
H. B. Heeney ◽  
W. M. Rutherford ◽  
K. F. MacQueen

The effects of gamma radiation doses of 110,000, 220,000, and 330,000 rad on the storage life and quality of two varieties of strawberries stored at 40°, 55°, and 70° F were studied. Results indicated that a dose of 330,000 rad prevented fungal development of the Redcoat variety stored for 26 days at 40° F. The fungal-free period was sharply reduced at lower radiation doses or at higher storage temperatures. Under the conditions of this trial there was no apparent effect of radiation on appearance or texture of fruit.In organoleptic tests in the first two weeks of storage observers were not able to differentiate between radiation treatments. There was some preference for treated berries as the storage period increased. After 20 days the flavor of the fruit deteriorated very rapidly and it soon became commercially unacceptable.


2002 ◽  
Vol 32 (4) ◽  
pp. 571-576 ◽  
Author(s):  
Adriano Arriel Saquet ◽  
Josef Streif

The chlorophyll fluorescence technique was evaluated as a possible predictive and nondestructive method to detect low-O2 and/or high-CO2 injuries in 'Conference' pears and 'Jonagold' apples stored in controlled atmosphere (CA). The fruits were kept at 0°C in air, 1% CO2 + 2% O2 or 3% CO2 + 1% O2 during five months. Fluorescence parameters of minimal fluorescence (Fo), maximal fluorescence (Fm), and potential quantum yield - (Fm-Fo):Fm, also denoted as Fv:Fm- as well as the incidence of browning disorders were evaluated at several times during storage. No incidence of browning disorders was observed in 'Jonagold' apples, however, they showed a decrease in Fv:Fm during storage time with no differences between the CA-conditions. Air-stored apples showed a higher decrease in Fv:Fm. On the other hand, 'Conference' pears kept in 3% CO2 + 1% O2 developed a lot of browning injuries such as core flush, flesh browning and cavities. Under this CA-condition, a pronounced decrease in the quotient Fv:Fm was observed already in the first 15 days of storage prior to the development of browning, and this behaviour remained during the whole storage period. The air-stored pears showed a similar behaviour as of the air-stored apples with a pronounced decrease in the Fv:Fm at the end of the storage period. The present results indicate that chlorophyll fluorescence is a promising technique to detect browning injuries in 'Conference' pears prior to their development.


2019 ◽  
Vol 7 (5) ◽  
pp. 311-320
Author(s):  
Umurhurhu Benjamin ◽  
Uguru Hilary

The mechanical properties of eggplant fruit (cv. Bello) harvested at physiological maturity stage were evaluated in three storage periods (3d, 6d and 9d). These mechanical parameters (rupture force, rupture energy and deformation at rupture point) were measured under quasi compression loading, using the Universal Testing Machine (Testometric model). The fruit’s toughness and rupture power were calculated from the data obtained from the rupture energy and deformation at rupture point. Results obtained showed that mechanical properties of the Bello eggplant fruit exhibited strong dependence on the storage period. The results showed that as the Bello fruit stored longer, its rupture force and rupture energy decreased from 812 N to 411 N, and 5.58 Nm to 3.11 Nm respectively. While the rupture power decreased from 1.095 W to 0.353 W. On the contrary, the toughness and deformation at rupture increased from 0.270 mJ/mm3 to 0.403 mJ/mm3, and 16.99 mm to 25.22mm respectively during the 9 days storage period. The knowledge of the mechanical properties of fruits is important for their harvest and post-harvest operations, therefore, information obtained from this study will be useful in the design and development of machines for the mechanization of eggplant production.


2002 ◽  
Vol 127 (6) ◽  
pp. 998-1005 ◽  
Author(s):  
Sastry Jayanty ◽  
Jun Song ◽  
Nicole M. Rubinstein ◽  
Andrés Chong ◽  
Randolph M. Beaudry

The temporal relationship between changes in ethylene production, respiration, skin color, chlorophyll fluorescence, volatile ester biosynthesis, and expression of ACC oxidase (ACO) and alcohol acyl-CoA transferase (AAT) in ripening banana (Musa L. spp., AAA group, Cavendish subgroup. `Valery') fruit was investigated at 22 °C. Ethylene production rose to a peak a few hours after the onset of its logarithmic phase; the peak in production coincided with maximal ACO expression. The respiratory rise began as ethylene production increased, reaching its maximum ≈30 to 40 hours after ethylene production had peaked. Green skin coloration and photochemical efficiency, as measured by chlorophyll fluorescence, declined simultaneously after the peak in ethylene biosynthesis. Natural ester biosynthesis began 40 to 50 hours after the peak in ethylene biosynthesis, reaching maximal levels 3 to 4 days later. While AAT expression was detected throughout, the maximum level of expression was detected at the onset of natural ester biosynthesis. The synthesis of unsaturated esters began 100 hours after the peak in ethylene and increased with time, suggesting the lipoxygenase pathway be a source of ester substrates late in ripening. Incorporation of exogenously supplied ester precursors (1-butanol, butyric acid, and 3-methyl-1-butanol) in the vapor phase into esters was maturity-dependent. The pattern of induced esters and expression data for AAT suggested that banana fruit have the capacity to synthesize esters over 100 hours before the onset of natural ester biosynthesis. We hypothesize the primary limiting factor in ester biosynthesis before natural production is precursor availability, but, as ester biosynthesis is engaged, the activity of alcohol acyl-CoA transferase the enzyme responsible for ester biosynthesis, exerts a major influence.


2016 ◽  
Vol 8 (3) ◽  
pp. 1615-1617
Author(s):  
Jyoti Prabha Bishnoi ◽  
Rakesh Gehlot ◽  
S. Siddiqui

Ascorbic acid and total phenol in frozen aonla pulp on zero day of storage was found to be 365.5 mg/100g and 2.1 mg/g while in dehydrated aonla pulp it was 2.3 mg/100mg and 14.7 mg/g which was found to decrease with the increase in storage duration. However, significant increase (CD at 5% Level) in total soluble solids (TSS) and non-enzymatic browning was noticed with the advancement in storage duration. The decrease and increase in physico-chemical characteristics were more significant in dehydrated aonla pulp as compared to frozen aonla pulp. Mean score for sensory attributes of dehydrated aonla pulp at zero month of storage was fairly less than frozen aonla pulp. Moreover, there was more significant decrease in value of sensory attributes of dehydrated aonla pulp during six months storage period compared to frozen aonla pulp. Thus, present study was first in its kind to determine and compare chemical composition and overall acceptability of frozen and dehydrated aonla pulp obtained from aonla fruits cv. Chakaiya during storage for optimizing there use in further development of value added aonla product.


2019 ◽  
Vol 18 (3) ◽  
pp. 35-43
Author(s):  
Mariusz Szmagara ◽  
Krystyna Pudelska ◽  
Wojciech Durlak ◽  
Barbara Marcinek ◽  
Kamila Rojek

Striving to intensify horticultural production, new and more effective bio-preparations are being sought to stimulate plant growth and development. Bio-algeen S90 is a natural agent based on sea algae, the high bi- ological activity of which results from the high content of natural growth regulators. The aim of the study was to verify the influence of Bio-algeen S90 on the growth, morphological characteristics and chlorophyll fluorescence of Rosa multiflora seedlings. The bio-preparation was applied one, two and three times at con- centrations: 0.1, 0.2, 0.4 and 0.6 mg.dm−3. Following parameters were measured to evaluate the response of plants to the bio-preparation: F0 – initial fluorescence, Fm – maximal fluorescence in the dark-adapted state, Fv/Fm – maximum photochemical efficiency of PSII. All concentrations of the bio-preparation and frequency of its application stimulated the number of shoots in a bush, the length of shoots and the diameter of the root crown of plants intended for budding. The most beneficial was the two-fold bio-preparation application at a concentration of 0.4 mg.dm–3. Bio-algeen also positively influenced the chlorophyll fluorescence parame- ters. The highest mean F0 and Fm values were recorded with the two-fold preparation treatment. There was no significant effect of the bio-preparation on the Fv/Fm index, which was within the range of 0.75–0.66.


Author(s):  
Longsheng Chen ◽  
qian Lv ◽  
yao Gong ◽  
Lili Zou

Abstract A novel self-supporting multi-layer magnetorheological elastomer-based (MRE-based) composite with large magnetic field-induced responsiveness has been designed and fabricated. We characterized its morphological properties, evaluated the impact of fabrication conditions on its field-induced responsiveness, investigated attenuation of its field-induced responsiveness under different storage temperatures along with time and analyzed this mechanism from the perspective of rheology. The results showed that the MRE-based composite had homogeneous dispersing of the magnetic fillers and a clear interface between different layers. The field-induced responsiveness of the MRE-based composite could be affected by the fabrication conditions, and it attenuated at different rates when subjected to different storage temperatures along with time; its attenuation period lasted a few days under room temperature while over one month under low temperature (4℃). The rheological analysis results indicated a long-term cross-linking process over the storage period along with the attenuation of field-induced responsiveness, which might lead to increasing elasticity (indicated by the loss factor tan δ) and rigidity (indicated by the storage modulus G') of the MRE-based composite along with the storage period. What's more, emerging feature of Payne effect could be found on MRE-based composite during cyclic shear, which indicated decline of the mechanical properties due to strain-induced inherent friction. On the other hand, the iron fillers in MRE layer could enhance the shear modulus and lead to MR effect (up to 187%) for the whole composite, which benefits to the magnetic field-induced responsiveness, due to the relative strengthen of the MRE layer against the assist layer. This work presents a better understanding on the attenuation of the field-induced responsiveness, which is important for the future application of the MRE-based composite.


Sign in / Sign up

Export Citation Format

Share Document