scholarly journals Ion-specific Limitations of Sodium Chloride and Calcium Chloride on Growth, Nutrient Uptake, and Mycorrhizal Colonization in Northern and Southern Highbush Blueberry

Author(s):  
David R. Bryla ◽  
Carolyn F. Scagel ◽  
Scott B. Lukas ◽  
Dan M. Sullivan

Excess salinity is becoming a prevalent problem for production of highbush blueberry (Vaccinium L. section Cyanococcus Gray), but information on how and when it affects the plants is needed. Two experiments, including one on the northern highbush (Vaccinium corymbosum L.) cultivar, Bluecrop, and another on the southern highbush (V. corymbosum interspecific hybrid) cultivar, Springhigh, were conducted to investigate their response to salinity and assess whether any suppression in growth was ion specific or due primarily to osmotic stress. In both cases, the plants were grown in soilless media (calcined clay) and fertigated using a complete nutrient solution containing four levels of salinity [none (control), low (0.7–1.3 mmol·d−1), medium (1.4–3.4 mmol·d−1), and high (2.8–6.7 mmol·d−1)] from either NaCl or CaCl2. Drainage was minimized in each treatment except for periodic determination of electrical conductivity (EC) using the pour-through method, which, depending on the experiment, reached levels as high as 3.2 to 6.3 dS·m−1 with NaCl and 7.8 to 9.5 dS·m−1 with CaCl2. Total dry weight of the plants was negatively correlated to EC and, depending on source and duration of the salinity treatment, decreased linearly at a rate of 1.6 to 7.4 g·dS−1·m−1 in ‘Bluecrop’ and 0.4 to 12.5 g·dS−1·m−1 in ‘Springhigh’. Reductions in total dry weight were initially similar between the two salinity sources; however, by the end of the study, which occurred at 125 days in ‘Bluecrop’ and at 111 days in ‘Springhigh’, dry weight declined more so with NaCl than with CaCl2 in each part of the plant, including in the leaves, stems, and roots. The percentage of root length colonized by mycorrhizal fungi also declined with increasing levels of salinity in Bluecrop and was lower in both cultivars when the plants were treated with NaCl than with CaCl2. However, leaf damage, which included tip burn and marginal necrosis, was greater with CaCl2 than with NaCl. In general, CaCl2 had no effect on uptake or concentration of Na in the plant tissues, whereas NaCl reduced Ca uptake in both cultivars and reduced the concentration of Ca in the leaves and stems of Bluecrop and in each part of the plant in Springhigh. Salinity from NaCl also resulted in higher concentrations of Cl and lower concentrations of K in the plant tissues than CaCl2 in both cultivars. The concentration of other nutrients in the plants, including N, P, Mg, S, B, Cu, Fe, Mn, and Zn, was also affected by salinity, but in most cases, the response was similar between the two salts. These results point to ion-specific effects of different salts on the plants and indicate that source is an important consideration when managing salinity in highbush blueberry.

HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 607-610 ◽  
Author(s):  
B.E. Maust ◽  
J.G. Williamson ◽  
R.L. Darnell

Floral budbreak and fruit set in many southern highbush blueberry (SHB) cultivars (hybrids of Vaccinium corymbosum L. with other species of Vaccinium) begin prior to vegetative budbreak. Experiments were conducted with two SHB cultivars, `Misty' and `Sharpblue', to test the hypothesis that initial flower bud density (flower buds/m cane length) affects vegetative budbreak and shoot development, which in turn affect fruit development. Flower bud density of field-grown plants was adjusted in two nonconsecutive years by removing none, one-third, or two-thirds of the flower buds during dormancy. Vegetative budbreak, new shoot dry weight, leaf area, and leaf area: fruit ratios decreased with increasing flower bud density in both cultivars. Average fruit fresh weight and fruit soluble solids decreased in both cultivars, and fruit ripening was delayed in `Misty' as leaf area: fruit ratios decreased. This study indicates that because of the inverse relationship between flower bud density and canopy establishment, decreasing the density of flower buds in SHB will increase fruit size and quality and hasten ripening.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 905-909 ◽  
Author(s):  
Yang Fang ◽  
Jeffrey Williamson ◽  
Rebecca Darnell ◽  
Yuncong Li ◽  
Guodong Liu

Southern highbush blueberry (SHB, Vaccinium corymbosum L. interspecific hybrid) is the major species planted in Florida because of the low-chilling requirement and early ripening. The growth pattern and nitrogen (N) demand of SHB may differ from those of northern highbush blueberry (NHB, V. corymbosum L.). Thus, the effect of plant growth stage on N uptake and allocation was studied with containerized 1-year-old SHB grown in pine-bark amended soil. Five ‘Emerald’ plants were each treated with 6 g 10% 15N labeled (NH4)2SO4 at each of 12 dates over 2 years. In the first year, plants were treated once in late winter, four times during the growing season, and once in the fall. In the second year, treatment dates were based on phenological stages. After a 14-day chase period following each 15N treatment, plants were destructively harvested for dry weight (DW) measurements, atom% of 15N, and N content of each of the plant tissues. Total DW increased continuously from mid-May 2015 to Oct. 2015 and from Mar. 2016 to late Sept. 2016. From August to October of both years, external N demand was the greatest and plants absorbed more N during the 2-week chase period, about 0.53 g/plant in year 1 and 0.67 g/plant in year 2, than in chase periods earlier in the season. During March and April, N uptake was as low as 0.03 g/plant/2 weeks in year 1 and 0.21 g/plant/2 weeks in year 2. Nitrogen allocation to each of the tissues varied throughout the season. About half of the N derived from the applied fertilizer was allocated to leaves at all labeling times except the early bloom stage in 2016. These results suggest that young SHB plants absorb greater amounts of N during summer and early fall than in spring.


HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1413-1418 ◽  
Author(s):  
Khalid F. Almutairi ◽  
Rui M.A. Machado ◽  
David R. Bryla ◽  
Bernadine C. Strik

Northern highbush blueberry (Vaccinium corymbosum L.) is adapted to acidic soil conditions and often grows poorly when soil pH is greater than 5.5. When soil pH is high, growers will usually mix prilled elemental sulfur (So) into the soil before planting (converted to sulfuric acid by soil bacteria) and, if needed, inject acid into the irrigation water after planting. These practices are effective but often expensive, time consuming, and, in the case of acid, potentially hazardous. Here, we examined the potential of applying micronized So by chemigation through a drip system as an alternative to reduce soil pH in a new planting of ‘Duke’ blueberry. The planting was located in western Oregon and established on raised beds mulched with sawdust in Oct. 2010. The So product was mixed with water and injected weekly for a period of ≈2 months before planting and again for period of ≈2 months in late summer of the second year after planting (to assess its value for reducing soil pH once the field was established), at a total rate of 0, 50, 100, and 150 kg·ha−1 So on both occasions. Each treatment was compared with the conventional practice of incorporating prilled So into the soil before planting (two applications of 750 kg·ha−1 So each in July and Oct. 2010). Within a month of the first application of So, chemigation reduced soil pH (0–10 cm depth) from an average of 6.6 with no So to 6.1 with 50 kg·ha−1 So and 5.8 with 100 or 150 kg·ha−1 So. However, the reductions in pH were short term, and by May of the following year (2011), soil pH averaged 6.7, 6.5, 6.2, and 6.1 with each increasing rate of So chemigation, respectively. Soil pH in the conventional treatment, in comparison, averaged 6.6 a month after the first application and 6.3 by the following May. In July 2012, soil pH ranged from an average of 6.4 with no So to 6.2 with 150 kg·ha−1 So and 5.5 with prilled So. Soil pH declined to as low as 5.9 following postplanting So chemigation and, at lower depths (10–30 cm), was similar between the treatment chemigated with 150 kg·ha−1 So and the conventional treatment. None of the treatments had any effect on winter pruning weight in year 1 or on yield, berry weight, or total dry weight of the plants in year 2. Concentration of P, K, Ca, Mg, S, and Mn in the leaves, on the other hand, was lower with So chemigation than with prilled So during the first year after planting, whereas concentration of N, P, and S in the leaves were lower with So chemigation during the second year. The findings indicate that So chemigation can be used to quickly reduce soil pH after planting and therefore may be a useful practice to correct high pH problems in established northern highbush blueberry fields; however, it was less effective and more time consuming than applying prilled So before planting.


2007 ◽  
Vol 132 (2) ◽  
pp. 270-277 ◽  
Author(s):  
David R. Bryla ◽  
Bernadine C. Strik

Plant water requirements were investigated in three northern highbush blueberry (Vaccinium corymbosum L.) cultivars, Duke, Bluecrop, and Elliott, grown either at a high-density spacing of 0.45 m apart within rows or a more traditional spacing of 1.2 m. Spacing between rows was 3.0 m. As is typical for the species, each cultivar was shallow-rooted with most roots located less than 0.4 m deep, and each was sensitive to soil water deficits with plant water potentials declining as low as −1.6 MPa within 5 to 7 days without rain or irrigation. Compared with traditional spacing, planting at high density significantly reduced dry weight and yield of individual plants but significantly increased total dry weight and yield per hectare. High-density planting also significantly increased total canopy cover and water use per hectare. However, although canopy cover (often considered a factor in water use) increased up to 246%, water use never increased more than 10%. Because of more canopy cover at high density, less water penetrated the canopy during rain or irrigation (by overhead sprinklers), reducing both soil water availability and plant water potential in each cultivar and potentially reducing water use. Among cultivars, water use was highest in ‘Duke’, which used 5 to 10 mm·d−1, and lowest in ‘Elliott’, which used 3 to 5 mm·d−1. Peak water use in each cultivar was during fruit development, but water use after harvest declined sharply. Longer irrigation sets (i.e., longer run times) or alternative irrigation methods (e.g., drip) may be required when growing blueberry at high density, especially in cultivars with dense canopies such as ‘Elliott’.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 658-663 ◽  
Author(s):  
Patrick H. Kingston ◽  
Carolyn F. Scagel ◽  
David R. Bryla ◽  
Bernadine C. Strik

Peat and coir are commonly used for substrate production of highbush blueberry (Vaccinium sp.). Perlite is also typically added to improve drainage and stability of the media. The purpose of the present study was to determine how various combinations of each affect growth and nutrition in highbush blueberry. Two cultivars, ‘Liberty’ northern highbush blueberry (V. corymbosum L.) and ‘Jewel’ southern highbush blueberry (interspecific hybrid of V. corymbosum L. and V. darrowii Camp.), were grown for 3 months in media containing 0%, 10%, 20%, or 30% perlite, by volume, and a 1:0, 2:1, 1:2, or 0:1 ratio of peat and coir. At 95 days after transplanting, total dry weight of the ‘Liberty’ plants was greatest in pure peat and progressively less as more coir or perlite was added to the media. Total dry weight of ‘Jewel’ also declined with increasing amounts of perlite but, in this case, was unaffected by the ratio of peat and coir. The response of the plants to perlite did not appear to be a function of pH or nutrition and was most likely related to the effects of perlite on media water relations. Response to peat and coir, on the other hand, may have been due to nutrition and salinity of the media. In both cultivars, a higher amount of peat in the media improved uptake of N, P, Mg, and S and decreased uptake of K, B, Zn, and Na. Coir, on the other hand, contained higher concentrations of Na and Cl than peat. These findings suggest that the use of high amounts of perlite in the media could be detrimental when growing highbush blueberry in substrate, and some cultivars may grow better in peat than in coir.


HortScience ◽  
1995 ◽  
Vol 30 (7) ◽  
pp. 1378-1381 ◽  
Author(s):  
Donald J. Merhaut ◽  
Rebecca L. Darnell

Ammonium and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} uptake and partitioning were monitored in `Sharpblue' southern highbush blueberry plants (Vaccinium corymbosum L. interspecific hybrid) using 10% 15N-enriched N. Shoots and roots were harvested at 0, 6, 12, 24, and 48 hours after labeling. The rate of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\mathrm{-}\mathrm{N}\) \end{document} uptake was higher than that of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\mathrm{-}\mathrm{N}\) \end{document} uptake, averaging 17.1 vs. 8.6 g N/g plant dry weight per hour during the 48-hour period for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\mathrm{-}\) \end{document} and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\mathrm{-treated}\) \end{document} plants, respectively. At the end of the 48 hours, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\mathrm{-}\mathrm{N}\) \end{document} accumulation averaged 79 mg N/plant compared to 40 mg accumulated by the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\mathrm{-}\mathrm{N}\mathrm{-treated}\) \end{document} plants. Similarly, the translocation rate of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\mathrm{-}\mathrm{N}\) \end{document} to shoots was higher than translocation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\mathrm{-}\mathrm{N}\) \end{document} to shoots (7.7 vs. 1.9 g N/g shoot dry weight per hour, respectively) during the 48 hours. Shoot accumulation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\mathrm{-}\mathrm{N}\) \end{document} averaged 40 mg N/plant at the end of 48 hours, while accumulation in shoots of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\mathrm{-}\mathrm{N}\mathrm{-treated}\) \end{document} plants averaged 10 mg N/plant. Short-term \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} uptake and translocation to shoots appears to be limited relative to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} uptake and translocation in southern highbush blueberry when plants are previously fertilized with NH4NO3.


2015 ◽  
Vol 140 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Alisson P. Kovaleski ◽  
Jeffrey G. Williamson ◽  
James W. Olmstead ◽  
Rebecca L. Darnell

Blueberry (Vaccinium spp.) production is increasing worldwide, particularly in subtropical growing regions, but information on timing and extent of inflorescence bud development during summer and fall and effects on bloom the next season are limited. The objectives of this study were to determine time of inflorescence bud initiation, describe internal inflorescence bud development, and determine the relationship between internal inflorescence bud development and bloom period the next spring in two southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrids)] cultivars. ‘Emerald’ and ‘Jewel’ SHB buds were collected beginning in late summer until shoot growth cessation in late fall for dissection and identification of organ development. Inflorescence bud frequency and number, vegetative and inflorescence bud length and width throughout development, and bloom were also assessed. Inflorescence bud initiation occurred earlier in ‘Emerald’ compared with ‘Jewel’. Five stages of internal inflorescence bud development were defined throughout fall in both cultivars, ranging from a vegetative meristem to early expansion of the inflorescence bud in late fall. ‘Emerald’ inflorescence buds were larger and bloomed earlier, reflecting the earlier inflorescence bud initiation and development. Although inflorescence bud initiation occurred earlier in ‘Emerald’ compared with ‘Jewel’, the pattern of development was not different. Timing of inflorescence bud initiation influenced timing of bloom with earlier initiation resulting in earlier bloom.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 130
Author(s):  
Flor Hernandez ◽  
Rosalinda Villarreal ◽  
Valentin Torres ◽  
Adrien Gallou

Research into the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) is key for sustainable agricultural intensification. The objective of the present study is to evaluate native AMF at the monosporic level in greenhouse-grown, economically important crops. Agricultural soil samples from three locations (Saltillo, Zaragoza, and Parras) were obtained by combining portions resulting from a zigzag sampling pattern. From these samples, 15 morphotypes were extracted according to a modified Gerdemann’s technique and monosporically inoculated on melon, cucumber, tomato, and onion, 30 days after their sowing. Under a completely random experimental design, 16 treatments with three repetitions were defined. Plant height, root length, stem diameter, total fresh weight, fresh root weight, dry root weight, bulb weight, fresh leaf weight, total dry weight, flower number, leaf number, fruit number, spore number, and percentage of colonization were all evaluated. The results were subjected to the analysis of variance (ANOVA) and the Tukey comparison test (p ≤ 0.05), which showed that the monosporic inoculation favors significantly the AMF and the host, while the T6 (Saltillo spore + Steiner modified with 20% of the normal phosphorus concentration) showed a greater response uniformity on onion and melon, which indicates its great potential as an inoculum.


Sign in / Sign up

Export Citation Format

Share Document