scholarly journals Effects of Cultivar and Plant Spacing on the Seasonal Water Requirements of Highbush Blueberry

2007 ◽  
Vol 132 (2) ◽  
pp. 270-277 ◽  
Author(s):  
David R. Bryla ◽  
Bernadine C. Strik

Plant water requirements were investigated in three northern highbush blueberry (Vaccinium corymbosum L.) cultivars, Duke, Bluecrop, and Elliott, grown either at a high-density spacing of 0.45 m apart within rows or a more traditional spacing of 1.2 m. Spacing between rows was 3.0 m. As is typical for the species, each cultivar was shallow-rooted with most roots located less than 0.4 m deep, and each was sensitive to soil water deficits with plant water potentials declining as low as −1.6 MPa within 5 to 7 days without rain or irrigation. Compared with traditional spacing, planting at high density significantly reduced dry weight and yield of individual plants but significantly increased total dry weight and yield per hectare. High-density planting also significantly increased total canopy cover and water use per hectare. However, although canopy cover (often considered a factor in water use) increased up to 246%, water use never increased more than 10%. Because of more canopy cover at high density, less water penetrated the canopy during rain or irrigation (by overhead sprinklers), reducing both soil water availability and plant water potential in each cultivar and potentially reducing water use. Among cultivars, water use was highest in ‘Duke’, which used 5 to 10 mm·d−1, and lowest in ‘Elliott’, which used 3 to 5 mm·d−1. Peak water use in each cultivar was during fruit development, but water use after harvest declined sharply. Longer irrigation sets (i.e., longer run times) or alternative irrigation methods (e.g., drip) may be required when growing blueberry at high density, especially in cultivars with dense canopies such as ‘Elliott’.

HortScience ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 95-101 ◽  
Author(s):  
David R. Bryla ◽  
Jim L. Gartung ◽  
Bernadine C. Strik

A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. ‘Elliott’) to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds and irrigated by sprinklers, microsprays, or drip at a rate of 50%, 100%, and 150% of the estimated crop evapotranspiration (ETc) requirement. After 2 years, drip irrigation at 100% ETc produced the most growth among the irrigation methods with at least 42% less water than needed for maximum growth with microsprays and 56% less water than needed with sprinklers. Drip irrigation also maintained higher soil water content in the vicinity of the roots than the other methods but reduced growth when plants were over-irrigated at 150% ETc. Only 570 mm of irrigation water, or the equivalent of 1320 L per plant, was required over two seasons to reach maximum total plant dry weight with drip, whereas 980 mm or more water was needed with sprinklers and microsprays. Consequently, irrigation water use efficiency (defined as the difference in plant biomass produced under irrigated and rain-fed conditions divided by the total amount of irrigation water applied) was significantly higher with drip than with the other irrigation methods, averaging 0.41 g of total dry weight per liter of drip irrigation. In terms of both growth and water use, drip irrigation was the best and most efficient method to establish the plants.


1983 ◽  
Vol 34 (1) ◽  
pp. 13 ◽  
Author(s):  
DR Woodruff

In field experiments in southern Queensland comparisons were made, for a given wheat genotype, of the influence on grain yield of varying the rate of development while maintaining common dates either of anthesis or of planting. Rates of development were varied by the use of extended photoperiods or of isogenic lines of Triple Dirk varying in developmental rate. Hastened development lowered spikelet numbers and total dry weight at anthesis in all the genotypes tested, under highly stressed dryland and fully irrigated conditions. The saving in water use due to fast development rate, measured as available water at anthesis, was not proportional to the difference in total dry weight. This could be due to additional effective rainfall in the longer growing season wheats, to a high rainfall event just prior to anthesis reducing differences in available soil water, or to the complete use of soil water reserves in all treatments. With a common anthesis date, the saving in water use by the quicker developing crops (i.e. later planted) did not offset their lower dry weights and spikelet numbers at anthesis, so that there was either no yield difference or a yield decline with faster development rates. Where common dates of planting were compared the faster developing treatment (i.e. earlier flowering) still showed a trend to reduction in grain number per unit area, but this was usually offset by higher kernel weights. The yield outcome in this case was dominated by the prevailing environmental conditions at the differing anthesis dates.


1986 ◽  
Vol 16 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Göran Örlander ◽  
Karin Due

Seedlings of Pinussylvestris L. were grown in three different soil media: 100% peat, 40% silt–60% peat, and 60% silt–40% peat. The percentages refer to total dry weight. Needle conductance, needle water potential, and plant water conductance were measured at different levels of soil water potentials controlled with a semipermeable membrane system. Seedlings grown in the 60:40 silt–peat mixture had a plant water conductance at a soil water potential of −0.1 MPa 3 times that of seedlings grown in pure peat. In an experiment where the roots were dipped in a silt slurry before planting, it was found that the plant water conductance at low soil water potential (−0.1 MPa) increased more than 2 times compared with undipped controls. We concluded that an important resistance to water flow in the soil–plant pathway was located in the soil outside the roots and probably was the most important resistance in the root–soil interface. The use of low humified peat as a growth medium is open to discussion from a silvicultural point of view because of its hydraulic properties under dry conditions.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1463-1467 ◽  
Author(s):  
David R. Bryla ◽  
Robert G. Linderman

A 2-year study was done in Oregon to determine the effects of irrigation method and level of water application on the development of root rot in northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). Plants were grown on mulched, raised beds and irrigated by overhead sprinklers, microsprays, or drip at 50%, 100%, and 150% of the estimated crop evapotranspiration requirement. Soil at the site was a silty clay loam. By the end of the first season, plants were largest with drip, intermediate-sized with microsprays and smallest with sprinklers; however, this was not the case the next season. By the end of year 2, plants irrigated by drip had less canopy cover, fewer new canes, lower pruning weights, and only half the shoot and root dry weight as plants irrigated by sprinklers or microsprays. Destructive sampling revealed that the field was infested by root rot. Less growth with drip was association with higher levels of infection by the root pathogen, Phytophthora cinnamomi. Phytophthora infection increased with water application, regardless of irrigation method, but averaged 14% with drip and only 7% with sprinklers and microsprays. Roots were also infected by Pythium spp. Pythium infection likewise increased with the total amount of water applied but, unlike P. cinnamomi, was similar among irrigation methods. Overall, drip irrigation maintained higher soil water content near the base of the plants than sprinklers and microsprays, resulting in conditions more favorable to root rot. Sprinklers and microsprays may be better alternatives than drip at sites prone to problems with the disease.


Author(s):  
David R. Bryla ◽  
Carolyn F. Scagel ◽  
Scott B. Lukas ◽  
Dan M. Sullivan

Excess salinity is becoming a prevalent problem for production of highbush blueberry (Vaccinium L. section Cyanococcus Gray), but information on how and when it affects the plants is needed. Two experiments, including one on the northern highbush (Vaccinium corymbosum L.) cultivar, Bluecrop, and another on the southern highbush (V. corymbosum interspecific hybrid) cultivar, Springhigh, were conducted to investigate their response to salinity and assess whether any suppression in growth was ion specific or due primarily to osmotic stress. In both cases, the plants were grown in soilless media (calcined clay) and fertigated using a complete nutrient solution containing four levels of salinity [none (control), low (0.7–1.3 mmol·d−1), medium (1.4–3.4 mmol·d−1), and high (2.8–6.7 mmol·d−1)] from either NaCl or CaCl2. Drainage was minimized in each treatment except for periodic determination of electrical conductivity (EC) using the pour-through method, which, depending on the experiment, reached levels as high as 3.2 to 6.3 dS·m−1 with NaCl and 7.8 to 9.5 dS·m−1 with CaCl2. Total dry weight of the plants was negatively correlated to EC and, depending on source and duration of the salinity treatment, decreased linearly at a rate of 1.6 to 7.4 g·dS−1·m−1 in ‘Bluecrop’ and 0.4 to 12.5 g·dS−1·m−1 in ‘Springhigh’. Reductions in total dry weight were initially similar between the two salinity sources; however, by the end of the study, which occurred at 125 days in ‘Bluecrop’ and at 111 days in ‘Springhigh’, dry weight declined more so with NaCl than with CaCl2 in each part of the plant, including in the leaves, stems, and roots. The percentage of root length colonized by mycorrhizal fungi also declined with increasing levels of salinity in Bluecrop and was lower in both cultivars when the plants were treated with NaCl than with CaCl2. However, leaf damage, which included tip burn and marginal necrosis, was greater with CaCl2 than with NaCl. In general, CaCl2 had no effect on uptake or concentration of Na in the plant tissues, whereas NaCl reduced Ca uptake in both cultivars and reduced the concentration of Ca in the leaves and stems of Bluecrop and in each part of the plant in Springhigh. Salinity from NaCl also resulted in higher concentrations of Cl and lower concentrations of K in the plant tissues than CaCl2 in both cultivars. The concentration of other nutrients in the plants, including N, P, Mg, S, B, Cu, Fe, Mn, and Zn, was also affected by salinity, but in most cases, the response was similar between the two salts. These results point to ion-specific effects of different salts on the plants and indicate that source is an important consideration when managing salinity in highbush blueberry.


Weed Science ◽  
1991 ◽  
Vol 39 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Richard K. Zollinger ◽  
James J. Kells

Growth of perennial sowthistle was examined under different levels of soil pH, soil moisture content, light intensity, and temperature. Soil pH ranging from 5.2 to 7.2 had little effect on the number of leaves, rosette diameter, plant height, and number of capitula. However, total dry weight was 30% less in plants grown in soil of pH 5.2 compared to those grown at higher soil pH levels. Perennial sowthistle demonstrated a consistent positive growth response to increasing soil water including saturation. Severe reduction in vegetative and reproductive growth occurred in plants grown in soil below field capacity. Plants grown under full light (1015 μE m−2s−1photosynthetic photon flux density) developed a fourfold increase in the number of capitula per plant and a 50% increase in total dry weight compared to plants grown at 285 μE m−2s−1. Initiation of reproduction was delayed 4 weeks for plants grown at 580 μE m−2s−1and 285 μE m−2s−1. Plants grown under less than full light developed fewer but larger leaves. Plants grown under a day/night temperature of 20/15 C grew more rapidly than those under 30/25 C or 10/5 C. Plants at 30/25 C began to senesce 7 to 8 weeks after planting. Net carbon assimilation, leaf conductance, transpiration, and water use efficiency decreased as soil moisture and light intensity decreased. Plants at 30/25 C had the highest rate of transpiration and the lowest water use efficiency. The observed optimum for perennial sowthistle growth occurred at a soil pH of 6.2 or 7.2, water-saturated soil, high light intensity, and a temperature of 20/15 C, day/night.


HortScience ◽  
2020 ◽  
Vol 55 (8) ◽  
pp. 1280-1287
Author(s):  
Bernadine C. Strik ◽  
Amanda J. Davis ◽  
David R. Bryla ◽  
Scott T. Orr

A 2-year trial was established in Oct. 2016 in western Oregon to evaluate the effects of various in-row mulch treatments on the establishment of northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). The treatments included douglas fir [Pseudotsuga menziesii (Mirb.) Franco] sawdust, black weed mat (woven polypropylene groundcover), green weed mat, and sawdust covered with black or green weed mat. Soil temperature was unaffected by the color of the weed mat, but it was often higher during the day in beds with weed mat mulch than in those with sawdust alone or sawdust covered with weed mat. Black or green weed mat also resulted in higher canopy temperatures, particularly when sawdust was underneath the weed mat. Plant growth was mainly unaffected by the color of the weed mat, and the maximum depth of the root system was similar among the mulch treatments. However, plants grown with sawdust mulch, with or without weed mat, had a greater canopy width and volume in year 2, a wider root system in both years, and more dry weight (DW) in the crown in year 1 and in the whips in year 2 than those with weed mat alone. Furthermore, plants with weed mat over sawdust were taller in year 1 and had greater canopy cover and more DW in new wood in year 2 than those with sawdust alone, and they had a larger canopy, more root development, and greater DW in the crown, new and old wood, fruit, and pruning wood in one or both years than those with weed mat alone. Over the course of the 2 years of the study, the net gain in total plant DW was lowest when the plants were grown with black weed mat and highest when they were grown with black weed mat over sawdust. Although it was more expensive initially, the use of weed mat over sawdust resulted in more plant growth than weed mat alone due to the insulating properties of the sawdust, and it was more effective for weed control than using sawdust alone.


HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1413-1418 ◽  
Author(s):  
Khalid F. Almutairi ◽  
Rui M.A. Machado ◽  
David R. Bryla ◽  
Bernadine C. Strik

Northern highbush blueberry (Vaccinium corymbosum L.) is adapted to acidic soil conditions and often grows poorly when soil pH is greater than 5.5. When soil pH is high, growers will usually mix prilled elemental sulfur (So) into the soil before planting (converted to sulfuric acid by soil bacteria) and, if needed, inject acid into the irrigation water after planting. These practices are effective but often expensive, time consuming, and, in the case of acid, potentially hazardous. Here, we examined the potential of applying micronized So by chemigation through a drip system as an alternative to reduce soil pH in a new planting of ‘Duke’ blueberry. The planting was located in western Oregon and established on raised beds mulched with sawdust in Oct. 2010. The So product was mixed with water and injected weekly for a period of ≈2 months before planting and again for period of ≈2 months in late summer of the second year after planting (to assess its value for reducing soil pH once the field was established), at a total rate of 0, 50, 100, and 150 kg·ha−1 So on both occasions. Each treatment was compared with the conventional practice of incorporating prilled So into the soil before planting (two applications of 750 kg·ha−1 So each in July and Oct. 2010). Within a month of the first application of So, chemigation reduced soil pH (0–10 cm depth) from an average of 6.6 with no So to 6.1 with 50 kg·ha−1 So and 5.8 with 100 or 150 kg·ha−1 So. However, the reductions in pH were short term, and by May of the following year (2011), soil pH averaged 6.7, 6.5, 6.2, and 6.1 with each increasing rate of So chemigation, respectively. Soil pH in the conventional treatment, in comparison, averaged 6.6 a month after the first application and 6.3 by the following May. In July 2012, soil pH ranged from an average of 6.4 with no So to 6.2 with 150 kg·ha−1 So and 5.5 with prilled So. Soil pH declined to as low as 5.9 following postplanting So chemigation and, at lower depths (10–30 cm), was similar between the treatment chemigated with 150 kg·ha−1 So and the conventional treatment. None of the treatments had any effect on winter pruning weight in year 1 or on yield, berry weight, or total dry weight of the plants in year 2. Concentration of P, K, Ca, Mg, S, and Mn in the leaves, on the other hand, was lower with So chemigation than with prilled So during the first year after planting, whereas concentration of N, P, and S in the leaves were lower with So chemigation during the second year. The findings indicate that So chemigation can be used to quickly reduce soil pH after planting and therefore may be a useful practice to correct high pH problems in established northern highbush blueberry fields; however, it was less effective and more time consuming than applying prilled So before planting.


2008 ◽  
pp. 397-422 ◽  
Author(s):  
Ronald J. Ryel ◽  
Carolyn Y. Ivans ◽  
Michael S. Peek ◽  
A. Joshua Leffler

Sign in / Sign up

Export Citation Format

Share Document