scholarly journals Risk of human health by particulate matter as a source of air pollution -Comparison with tobacco smoking-

2008 ◽  
Vol 33 (3) ◽  
pp. 251-267 ◽  
Author(s):  
Makoto Enomoto ◽  
William J. Tierney ◽  
Kohsuke Nozaki
2020 ◽  
Author(s):  
Stephanie Koller ◽  
Christa Meisinger ◽  
Markus Wehler ◽  
Elke Hertig

<p>For a long time it has been known that exceptionally strong and long-lasting heat waves have negative health effects on the population, which is expressed in an intensification of existing diseases and over-mortality of certain risk groups (Kampa, Castanas 2008). Often associated with heat are stagnant airflow conditions that cause a large increase in the concentration of certain air substances (Ebi, McGregor 2008). Many of these air substances have a strong adverse effect on the human organism (Kampa, Castanas 2008).</p><p>The aim of the project is to investigate the actual hazard potential of health-relevant air pollution- and climatological variables by quantifying the effects on human health of increased exposure to air constituents and temperature extremes. Different multivariate statistical methods such as correlation analysis, regression models and random forests, extreme value analysis and individual case studies are used.</p><p>As a medical data basis for this purpose, the emergency department data of the University Hospital Augsburg are regarded. In addition to the diagnosis, supplementary information such as age, gender, place of residence and pre-existing conditions of the patients are used. Among the air constituents, the focus is on ozone, nitrogen dioxide and particulate matter. In the meteorological part, the focus is primarily on temperature, which is not only a direct burden but, as in the case of ozone, also has a decisive influence on the formation of ozone molecules. However, a large number of other meteorological parameters such as precipitation, relative humidity and wind speed as well as the synoptic situation also play a major role in the formation, decomposition process and the distribution of pollutants (Ebi, McGregor 2008).</p><p>The first major question to answer is whether air-pollution and meteorological stress situations are visible in the emergency department data. Further in-depth questions are which factors have the greatest negative impact, what is the most common environment-related disease, which weather conditions carry a higher than average risk and what are the health risks of climate change.</p><p>Ideally, the analysis may also provide a short-term forecast from which to derive whether or not there will be an above or below average number of visits to the emergency department.</p><p>The project is funded by the German Federal Foundation for Environment (DBU) and the German Research Foundation (DFG) - project number 408057478.</p><p>Literature</p><p>Ebi K., McGregor G. (2008): Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts. doi: 10.1289/ehp.11463</p><p>Kampa M., Castanas E. (2008): Human health effects of air pollution. In: Environmental Pollution 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012</p>


2016 ◽  
Vol 371 (1696) ◽  
pp. 20150173 ◽  
Author(s):  
Fay H. Johnston ◽  
Shannon Melody ◽  
David M. J. S. Bowman

Air pollution from landscape fires, domestic fires and fossil fuel combustion is recognized as the single most important global environmental risk factor for human mortality and is associated with a global burden of disease almost as large as that of tobacco smoking. The shift from a reliance on biomass to fossil fuels for powering economies, broadly described as the pyric transition, frames key patterns in human fire usage and landscape fire activity. These have produced distinct patters of human exposure to air pollution associated with the Agricultural and Industrial Revolutions and post-industrial the Earth global system-wide changes increasingly known as the Anthropocene. Changes in patterns of human fertility, mortality and morbidity associated with economic development have been previously described in terms of demographic, epidemiological and nutrition transitions, yet these frameworks have not explicitly considered the direct consequences of combustion emissions for human health. To address this gap, we propose a pyrohealth transition and use data from the Global Burden of Disease (GBD) collaboration to compare direct mortality impacts of emissions from landscape fires, domestic fires, fossil fuel combustion and the global epidemic of tobacco smoking. Improving human health and reducing the environmental impacts on the Earth system will require a considerable reduction in biomass and fossil fuel combustion. This article is part of the themed issue ‘The interaction of fire and mankind’.


2018 ◽  
Vol 33 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Arun Kumar Sharma ◽  
Palak Baliyan ◽  
Prashant Kumar

AbstractMitigating the impact of pollution on human health worldwide is important to limit the morbidity and mortality arising from exposure to its effect. The level and type of pollutants vary in different urban and rural settings. Here, we explored the extent of air pollution and its impacts on human health in the megacity of Delhi (India) through a review of the published literature. The study aims at describing the extent of air pollution in Delhi, the magnitude of health problems due to air pollution and the risk relationship between air pollution and associated health effects. We found 234 published articles in the PubMed search. The search showed that the extent of air pollution in Delhi has been described by various researchers from about 1986 onwards. We synthesized the findings and discuss them at length with respect to reported values, their possible interpretations and any limitations of the methodology. The chemical composition of ambient air pollution is also discussed. Further, we discuss the magnitude of health problem with respect to chronic obstructive pulmonary diseases (COPD), bronchial asthma and other illnesses. The results of the literature search showed that data has been collected in last 28 years on ambient air quality in Delhi, though it lacks a scientific continuity, consistency of locations and variations in parameters chosen for reporting. As a result, it is difficult to construct a spatiotemporal picture of the air pollution status in Delhi over time. The number of sites from where data have been collected varied widely across studies and methods used for data collection is also non-uniform. Even the parameters studied are varied, as some studies focused on particulate matter ≤10 μm in aerodynamic diameter (PM10) and those ≤2.5 μm in aerodynamic diameter (PM2.5), and others on suspended particulate matter (SPM) and respirable suspended particulate matter (RSPM). Similarly, the locations of data collection have varied widely. Some of the sites were at busy traffic intersections, some on the terraces of offices and residential houses and others in university campuses or airports. As a result, the key question of the extent of pollution and its distribution across various parts of the city could be inferred. None of the studies or a combination of them could present a complete picture of the burden of diseases like COPD, bronchial asthma and other allergic conditions attributable to pollution in Delhi. Neither could it be established what fraction of the burden of the above diseases is attributable to ambient air pollution, given that other factors like tobacco smoke and indoor air pollution are also contributors to the causation of such diseases. In our discussion, we highlight the knowledge gaps and in the conclusion, we suggested what research can be undertaken to fill the these research gaps.


Author(s):  
Tanwi Trushna ◽  
Amit K. Tripathi ◽  
Sindhuprava Rana ◽  
Rajnarayan R. Tiwari

: Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tadesse W. Bulto

AbstractAir contamination influenced the human health and environmental well-being of the ecosystem. Particulate matter is a series of issues from major air pollutants in atmosphere. The aim of the review was to analyses the influence of particulate matter on human health and estimate the number of populations exposed to air pollution. The data analysed using the Environmental Benefits Mapping Analysis program model to selected African provinces. The review used 15% rollback data from the global burden disease and 5.8 µg/m³ the concentration of air pollutants from 1990 to 2013 years. The main findings of the study revealed that about 370 million (36.6%) population affected by air pollution. Besides, the risk factor associated with a population was 53,000 deaths per total population and 50,000 life-year losses. The economic value estimated to avoid a single case of particular matter on human health effect were estimated 14 billion dollars (US 2011). Priorities should be given to air quality management to improve the human and environmental health of ecosystems to reduce the global burden of disease of Africa regions.


2011 ◽  
Vol 8 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Jonathan O. Anderson ◽  
Josef G. Thundiyil ◽  
Andrew Stolbach

2019 ◽  
Vol 116 (18) ◽  
pp. 8775-8780 ◽  
Author(s):  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Jay S. Coggins ◽  
Jason D. Hill ◽  
Julian D. Marshall

Fine particulate matter (PM2.5) air pollution has been recognized as a major source of mortality in the United States for at least 25 years, yet much remains unknown about which sources are the most harmful, let alone how best to target policies to mitigate them. Such efforts can be improved by employing high-resolution geographically explicit methods for quantifying human health impacts of emissions of PM2.5 and its precursors. Here, we provide a detailed examination of the health and economic impacts of PM2.5 pollution in the United States by linking emission sources with resulting pollution concentrations. We estimate that anthropogenic PM2.5 was responsible for 107,000 premature deaths in 2011, at a cost to society of $886 billion. Of these deaths, 57% were associated with pollution caused by energy consumption [e.g., transportation (28%) and electricity generation (14%)]; another 15% with pollution caused by agricultural activities. A small fraction of emissions, concentrated in or near densely populated areas, plays an outsized role in damaging human health with the most damaging 10% of total emissions accounting for 40% of total damages. We find that 33% of damages occur within 8 km of emission sources, but 25% occur more than 256 km away, emphasizing the importance of tracking both local and long-range impacts. Our paper highlights the importance of a fine-scale approach as marginal damages can vary by over an order of magnitude within a single county. Information presented here can assist mitigation efforts by identifying those sources with the greatest health effects.


2013 ◽  
Vol 10 (1) ◽  
pp. 54 ◽  
Author(s):  
Adrian J. Friend ◽  
Godwin A. Ayoko ◽  
Daniel Jager ◽  
Megan Wust ◽  
E. Rohan Jayaratne ◽  
...  

Environmental context Identifying the sources responsible for air pollution is crucial for reducing the effect of the pollutants on human health. The sources of the pollutants were found here by applying two mathematical models to data consisting of particle size distribution and chemical composition data. The identified sources could be used as the basis for controlling or reducing emissions of air pollution into the atmosphere. Abstract Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. In this investigation, the sources of particles measured at two sites in Brisbane, Australia, were identified by analysing particle number size distribution data, chemical species concentrations and meteorological data with two source apportionment models. The source apportionment results obtained by positive matrix factorisation (PMF) and principal component analysis–absolute principal component scores (PCA–APCS) were compared with information from the gaseous chemical composition analysis. Although PCA–APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources were identified by both methods and these include: traffic 1, traffic 2, local traffic, biomass burning and two unassigned factors. Thus motor vehicle related activities had the greatest effect on the data with the average contribution from nearly all sources to the measured concentrations being higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology that utilised a combination of three types of data related to particulate matter to determine the sources and combination of two receptor models could assist future development of particle emission control and reduction strategies.


2016 ◽  
Vol 99 (4) ◽  
pp. 691-709 ◽  
Author(s):  
Christina Emmanouil ◽  
Eumorfia Drositi ◽  
Vasiliki Vasilatou ◽  
Evangelia Diapouli ◽  
Konstantinos Krikonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document