scholarly journals Sources of ultrafine particles and chemical species along a traffic corridor: comparison of the results from two receptor models

2013 ◽  
Vol 10 (1) ◽  
pp. 54 ◽  
Author(s):  
Adrian J. Friend ◽  
Godwin A. Ayoko ◽  
Daniel Jager ◽  
Megan Wust ◽  
E. Rohan Jayaratne ◽  
...  

Environmental context Identifying the sources responsible for air pollution is crucial for reducing the effect of the pollutants on human health. The sources of the pollutants were found here by applying two mathematical models to data consisting of particle size distribution and chemical composition data. The identified sources could be used as the basis for controlling or reducing emissions of air pollution into the atmosphere. Abstract Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. In this investigation, the sources of particles measured at two sites in Brisbane, Australia, were identified by analysing particle number size distribution data, chemical species concentrations and meteorological data with two source apportionment models. The source apportionment results obtained by positive matrix factorisation (PMF) and principal component analysis–absolute principal component scores (PCA–APCS) were compared with information from the gaseous chemical composition analysis. Although PCA–APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources were identified by both methods and these include: traffic 1, traffic 2, local traffic, biomass burning and two unassigned factors. Thus motor vehicle related activities had the greatest effect on the data with the average contribution from nearly all sources to the measured concentrations being higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology that utilised a combination of three types of data related to particulate matter to determine the sources and combination of two receptor models could assist future development of particle emission control and reduction strategies.

2018 ◽  
Author(s):  
Xing Peng ◽  
Jian Gao ◽  
Guoliang Shi ◽  
Xurong Shi ◽  
Yanqi Huangfu ◽  
...  

Abstract. Time series of pollutant concentrations consist of variations at different time scales that are attributable to many processes/sources (data noise, source intensities, meteorological conditions, climate, etc.). Improving the knowledge of the impact of multiple temporal-scale components on pollutant variations and pollution levels can provide useful information for suitable mitigation strategies for pollutant control during a high pollution episode. To investigate the source factors driving these variations, the Kolmogorov-Zurbenko (KZ) filter was used to decompose the time series of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and chemical species into intra-day, diurnal, synoptic, and baseline temporal-scale components (TS components). The synoptic TS component has the largest amplitude and relative contributions (about 50 %) to the total variance of SO42−, NH4+, and OC concentrations. The diurnal TS component has the largest relative contributions to the total variance of PM2.5, NO3−, EC, Ca, and Fe concentrations, ranging from 32 % to 47 %. To investigate the source impacts on PM2.5 from different TS components, four datasets RI (intra-day removed), RD (diurnal removed), RS (synoptic removed), and RBL (baseline removed) were created by respectively removing the intra-day, diurnal, synoptic, and baseline TS component from the original datasets. Multilinear Engine 2 (ME-2) and/or principal component analysis was applied to these four datasets as well as the original datasets for source apportionment. ME-2 solutions using the original and RI dataset identify crustal dust contributions. For the solutions from original, RI, RD, and RS datasets, the total primary source impacts are close, ranging from 35.1 to 40.4 μg m−3 during the entire sampling period. For the secondary source impacts, solutions from the original, RI and RD dataset give similar source impacts (about 30 μg m−3), which were higher than the impacts derived from the RS datasets (21.2 μg m−3).


2021 ◽  
Author(s):  
Karuna Singh ◽  
Dhananjay Tripathi

This chapter provides an introduction to particulate matter by discussing various ways of categorisation, characterisation and their health effects. The natural and anthropogenic sources of atmospheric particulate matter are discussed. The chapter also introduces qualitatively some aerosol concepts, such as their chemical composition and size distribution. Some examples are provided to illustrate how particulate matter, despite being microscopic particles, can manifest themselves in the atmosphere. Finally, the various pathways by which particulate matter impacts the health system are reviewed along with their interactions to understand concept behind the PM-associated health effects.


2014 ◽  
Vol 98 ◽  
pp. 271-282 ◽  
Author(s):  
Yolanda González-Castanedo ◽  
Teresa Moreno ◽  
Rocío Fernández-Camacho ◽  
Ana María Sánchez de la Campa ◽  
Andrés Alastuey ◽  
...  

Author(s):  
Francis Olawale Abulude

Particulate matter (PM) is one of the problems faced in environmental science. It has health effects on man and animals in both developed and developing countries. Research and efforts have been on it several years back. Policy statements and efforts have been published. This review paper is an added information on air pollution. In it, efforts were made in discussing these: classification, effects, methodology, case studies and source apportionment. It is hoped that this paper would contribute to existing knowledge on PM.


2020 ◽  
Author(s):  
Stephanie Koller ◽  
Christa Meisinger ◽  
Markus Wehler ◽  
Elke Hertig

<p>For a long time it has been known that exceptionally strong and long-lasting heat waves have negative health effects on the population, which is expressed in an intensification of existing diseases and over-mortality of certain risk groups (Kampa, Castanas 2008). Often associated with heat are stagnant airflow conditions that cause a large increase in the concentration of certain air substances (Ebi, McGregor 2008). Many of these air substances have a strong adverse effect on the human organism (Kampa, Castanas 2008).</p><p>The aim of the project is to investigate the actual hazard potential of health-relevant air pollution- and climatological variables by quantifying the effects on human health of increased exposure to air constituents and temperature extremes. Different multivariate statistical methods such as correlation analysis, regression models and random forests, extreme value analysis and individual case studies are used.</p><p>As a medical data basis for this purpose, the emergency department data of the University Hospital Augsburg are regarded. In addition to the diagnosis, supplementary information such as age, gender, place of residence and pre-existing conditions of the patients are used. Among the air constituents, the focus is on ozone, nitrogen dioxide and particulate matter. In the meteorological part, the focus is primarily on temperature, which is not only a direct burden but, as in the case of ozone, also has a decisive influence on the formation of ozone molecules. However, a large number of other meteorological parameters such as precipitation, relative humidity and wind speed as well as the synoptic situation also play a major role in the formation, decomposition process and the distribution of pollutants (Ebi, McGregor 2008).</p><p>The first major question to answer is whether air-pollution and meteorological stress situations are visible in the emergency department data. Further in-depth questions are which factors have the greatest negative impact, what is the most common environment-related disease, which weather conditions carry a higher than average risk and what are the health risks of climate change.</p><p>Ideally, the analysis may also provide a short-term forecast from which to derive whether or not there will be an above or below average number of visits to the emergency department.</p><p>The project is funded by the German Federal Foundation for Environment (DBU) and the German Research Foundation (DFG) - project number 408057478.</p><p>Literature</p><p>Ebi K., McGregor G. (2008): Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts. doi: 10.1289/ehp.11463</p><p>Kampa M., Castanas E. (2008): Human health effects of air pollution. In: Environmental Pollution 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012</p>


2012 ◽  
Vol 326-328 ◽  
pp. 330-334 ◽  
Author(s):  
Jan Valíček ◽  
Jana Müllerová ◽  
Vlastimil Kuběna ◽  
Pavel Koštial ◽  
Marta Harničárová ◽  
...  

Pollutants can be classified according to their chemical composition, harmfulness, hazardousness, risk rate and toxicity. The most monitored pollutants are particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NOx), sulfur dioxide (SO2), organic substances which are in the form of gaseous phase in waste gases expressed as total organic carbon, dibenzodioxins and dibenzofurans [1-3]. Other pollutants are divided into several groups and subgroups, such as substances with carcinogenic effects (asbestos, Co, Cd, Be, Ni, As, Cr, dioxins, etc.), solid inorganic contaminants (He, Se, animony, and others) and inorganic pollutants in the form of gases (HCl, HF, ammonia, etc.), organic gases and vapours (phenol, toluene, acetone and many others) and gases causing the greenhouse effect (CO2, methane, N2O, hydrofluorocarbons, etc.). The term particulate matter, or suspended matter refers to the emissions of a wide range of wind drift solids and liquid particles of material in size from several nanometres up to 0.5 mm, which stay in the air for some time. This is a major component of atmospheric pollution, which contributes to harmful effects not only on human health but also on intensity of materials degradation. Into the atmosphere, where we can meet them, regardless of particle size and chemical composition, in the form of a complex heterogeneous mixture, they are released from burning fossil fuels and also from burning biomass-based fuels, while domestic heating accounts for about 16% of the total production of particulate matter [4,5,6]. This percentage represents a degree of imperfect combustion of fuels used in local heating. Emissions from incomplete combustion are undesirable from the point of view of human health as well as from the economic point of view, because this leads to the degradation of materials. Nevertheless, since fuel combustion is necessary for the society, emissions are still produced. This paper presents an automated method of perfect combustion control in local heating in order to minimize emissions being produced.


2018 ◽  
Vol 33 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Arun Kumar Sharma ◽  
Palak Baliyan ◽  
Prashant Kumar

AbstractMitigating the impact of pollution on human health worldwide is important to limit the morbidity and mortality arising from exposure to its effect. The level and type of pollutants vary in different urban and rural settings. Here, we explored the extent of air pollution and its impacts on human health in the megacity of Delhi (India) through a review of the published literature. The study aims at describing the extent of air pollution in Delhi, the magnitude of health problems due to air pollution and the risk relationship between air pollution and associated health effects. We found 234 published articles in the PubMed search. The search showed that the extent of air pollution in Delhi has been described by various researchers from about 1986 onwards. We synthesized the findings and discuss them at length with respect to reported values, their possible interpretations and any limitations of the methodology. The chemical composition of ambient air pollution is also discussed. Further, we discuss the magnitude of health problem with respect to chronic obstructive pulmonary diseases (COPD), bronchial asthma and other illnesses. The results of the literature search showed that data has been collected in last 28 years on ambient air quality in Delhi, though it lacks a scientific continuity, consistency of locations and variations in parameters chosen for reporting. As a result, it is difficult to construct a spatiotemporal picture of the air pollution status in Delhi over time. The number of sites from where data have been collected varied widely across studies and methods used for data collection is also non-uniform. Even the parameters studied are varied, as some studies focused on particulate matter ≤10 μm in aerodynamic diameter (PM10) and those ≤2.5 μm in aerodynamic diameter (PM2.5), and others on suspended particulate matter (SPM) and respirable suspended particulate matter (RSPM). Similarly, the locations of data collection have varied widely. Some of the sites were at busy traffic intersections, some on the terraces of offices and residential houses and others in university campuses or airports. As a result, the key question of the extent of pollution and its distribution across various parts of the city could be inferred. None of the studies or a combination of them could present a complete picture of the burden of diseases like COPD, bronchial asthma and other allergic conditions attributable to pollution in Delhi. Neither could it be established what fraction of the burden of the above diseases is attributable to ambient air pollution, given that other factors like tobacco smoke and indoor air pollution are also contributors to the causation of such diseases. In our discussion, we highlight the knowledge gaps and in the conclusion, we suggested what research can be undertaken to fill the these research gaps.


Sign in / Sign up

Export Citation Format

Share Document