Seasonal Losses of Dissolved Organic Carbon and Total Dissolved Solids from Rice Production Systems in Northern California

2010 ◽  
Vol 39 (1) ◽  
pp. 304-313 ◽  
Author(s):  
Matthew D. Ruark ◽  
Bruce A. Linquist ◽  
Johan Six ◽  
Chris van Kessel ◽  
Chris A. Greer ◽  
...  
2017 ◽  
Vol 13 (3) ◽  
pp. 167
Author(s):  
Husnah Husnah ◽  
Eko Prianto ◽  
Siti Nurul Aida

Sungai Musi merupakan sungai besar mengaliri wilayah Sumatera Selatan, Lampung, dan Bengkulu , dan bervariasi dalam pemanfaatannya, khususnya di bagian hilir, didominasi oleh kegiatan industri yang membuang limbahnya ke Sungai Musi. Kajian pengaruh industri terhadap Sungai Musi telah dilakukan, namun sebatas analisis fisik dan kimia lingkungan dan belum mengarah kepada pengaruhnya terhadap organisme air. Organisme air adalah indikator penting perubahan lingkungan karena organisme khususnya organisme dasar (benthos) menyimpan sejarah proses-proses terjadi di perairan. Riset yang bertujuan untuk mengetahui kualitas perairan Sungai Musi bagian hilir ditinjau dari karakteristik fisik dan kimia dan struktur makrozoobenthos telah dilakukan di Sungai Musi, Sumatera Selatan pada bulan Mei dan September 2006. Riset dilakukan bersifat survei lapangan. Delapan stasiun ditentukan di Sungai Musi bagian hilir berdasarkan pada perbedaan mikrohabitat. Stasiun riset masing masing antara lain Sejagung, Pulokerto, Jembatan Ampera, Sebokor, Pulau Burung, Upang, Pulau Payung, dan Sungsang. Pada masing masing stasiun, dilakukan pengambilan contoh air untuk parameter fisika, kimia, dan makrobenthos. Contoh air diambil dari atas perahu motor pada kedalaman 1,0 m dari permukaan air dengan menggunakan kemmerer water sampler. Sebagian contoh dianalisis di lapangan (suhu, pH, dan oksigen terlarut) dan sebagian lagi yaitu jumlah padatan tersesuspensi (total suspended solids), jumlah padatan terlarut (total dissolved solids), jumlah karbon organik (total organic carbon), organik karbon terlarut (dissolved organic carbon), konsumsi oksigen biologi (biochemical oxygen demand), nitrat, dan fosfat dianalisis di laboratorium kimia. Contoh makrozoobenthos diambil pada 10 titik di masing-masing stasiun, dengan menggunakan ekman dredge dengan bukaan mulut 400 cm2. Contoh makrobenthos pada masingmasing titik tersebut disortir dengan menggunakan saringan dan kemudian digabungkan (dikomposit) dan diawetkan dengan formalin 10%. Data kualitas air dianalisis dengan principle component analysis dan kelimpahan makrozoobenthos dianalisis dengan analisis cluster. Kualitas perairan di Sungai Musi bagian hilir dikelompokkan atas 2 yang mengalami tekanan berat yaitu dari Sejagung sampai dengan Pulau Burung dan tekanan ringan yaitu dari Upang sampai dengan Muara Sungai Musi. Kelompok pertama dicirikan oleh nilai konsentrasi total dissolved solids, total organic carbon, dan dissolved organic carbon yang tinggi diiringi dengan kelimpahan makrozoobenhthos yang rendah serta didominasi oleh Tubifex sp. Kelompok ke-2 dari Upang sampai dengan Muara Sungai Musi dicirikan oleh nilai konsentrasi total suspended solids yang tinggi, dengan kelimpahan makrozoobenthos yang tinggi dan didominasi oleh Gammarus. Musi River is a large river , crossing three provinces, South Sumatra, Lampung and Bengkulu, and differeing in types and levels of its resources ultization, particularly at the down stream of Musi River, mostly dominated by industries activities producing a waste which flows to the river. Several studies on the effect of industries on the Musi River have been conducted , however , limmieted on physical dan chemical aspects of the water, not yet to evaluate its effect on aquatic organism. Aquatic organism such macrozoobenthos is important indicator of environmental changes since this organism records the history of processes occurred in the water. Study to assess water quality of the down stream Musi River based on physical, chemical water characteristics and macrozoobenthos community structure was conducted at may and september 2006 in Musi River located in South Sumatera Province of Indonesia. The study used inventory field survey. Eight sampling sites; Sejagung, Pulokerto, Jembatan Ampera, Sebokor, Pulau Burung, Upang, Pulau Payung, and Sungsang were selected based on the microhabitat difference. water sampling for physical and chemical parameters and sediment, and  macrozoobenthos were carried in each sampling site. Water sample was collected at a depth of 1.0 m from the water surface by using kemmerer water sampler. Some water quality parameters such as temperature, pH, and dissolved oxygen) were directly analyzed in the field, while the others such as total suspended solids, total dissolved solids, total organic carbon, dissolved organic carbon, biochemical oxygen demand, nitrate, and phosphate were analyzed in laboratory. Macrozoobenthos was collected at ten sampling points in each sampling sites using Ekman Dredge of 400 cm2 mouth opening. Macrozoobenthos from ten sampling points was composited, sorted and preserved with formalin 10%. Water quality parameters were analyzed with principle component analysis while macrozoobenthos abundance was analyzed with cluster. Results revealed that water quality at the down stream Musi River was classified into two groups. The first group was the heavy degraded sites from Sejagung to Pulau Burung, characterized by having high concentration of total dissolved solids, total organic carbon, and dissolved organic carbon, low abundance of macrozoobenthos with Tubifex sp. as the dominant species. The second group was light degraded sites from Upang to the mouth of Musi River, characterized by high concentration of total suspended solids and high macrozoobenthos abundance with Gammarus sp. as the dominant species.


1993 ◽  
Vol 33 (2) ◽  
pp. 239 ◽  
Author(s):  
R Naidu ◽  
DR Williamson ◽  
RW Fitzpatrick ◽  
IO Hollingsworth

The effect of landuse on composition of throughflow water immediately above the clayey B horizons in duplex soils (mostly natric and/or sodic) in the Mount Lofty Ranges, South Australia, was investigated using simple lysimeters. During July-November 1991, the pH of the first flow immediately after rainstorm under pines, native woodland, and pasture, respectively, was 5.7, 6.0, and 6.4. At each of the sites, average pH over 4 months during July-November was 5.8-5.9. Both the electrical conductivity (EC) and the amounts of total dissolved solids (TDS) were 2-3 times higher under pine than at other sites. The rate of change in EC with respect to TDS varied considerably among the sites, possibly due to the large differences in the concentration of dissolved organic compounds. Although the pH of water was >5.5, both aluminium and iron were recorded, especially under pine, where there were also high levels of dissolved organic compounds. High levels of suspended colloidal matter were recorded in the water flowing under pine, and these levels were related to dissolved organic carbon.


2002 ◽  
Vol 37 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Emmanuel Mapfumo ◽  
Walter D. Willms ◽  
David S. Chanasyk

Abstract A study was conducted at Stavely Research Station, Alberta, to determine the quantity and quality of surface runoff from small grassland watersheds under three grazing intensities, viz. ungrazed, heavy grazing (2.4 animal unit months per hectare, AUM ha-1) and very heavy grazing (4.8 AUM ha-1). The volume of surface runoff varied each year (1998, 1999 and 2000) and also differed across watersheds, with lower runoff in the ungrazed compared with the heavy and very heavy grazed watersheds. Total dissolved solids in surface runoff water ranged between 34 to 360 mg L-1, and that for runoff from the very heavy grazed watershed was greater than that from other watersheds. Electrical conductivity increased with increased grazing intensity on the watershed. In two of three years the very heavy grazed watershed had greater nitrate concentrations than the other two watersheds. In all three years the levels of nitrate were lower than the maximum acceptable level for drinking water (10 mg L-1 as nitrogen). Levels of orthophosphate (PO43-) in surface runoff from all three watersheds and the three years of study were less than 1 mg L-1, and mostly within the range considered typical for rivers and streams. Total carbon (up to 500 mg L-1) was greater than the amounts considered typical for streams and rivers, and most of it was organic carbon. Nuisance organisms such as algae, nematodes, Giardia spp., Cryptosporidium spp. and rotifers were detected in some surface runoff samples. However, no crustaceans were detected. The results of a canonical correlation analysis indicated that the dominant external forcing factors (meteorological and management) in influencing water quality were year of study, water temperature and grazing. Surface runoff discharge did not influence water quality measurements. The dominant water quality parameters were found to be total carbon, organic carbon, total dissolved solids and electrical conductivity. Overall, this study indicated that during the three years, the surface runoff volumes from the watersheds were small and grazing of these watersheds posed little risk of nutrient (e.g., nitrate, ammonia and orthophosphate) contamination of adjacent streams, but organic carbon loading and dissolved solids may be of concern. The presence of parasites was detected in two or less runoff water samples each year, and thus pose little risk of contamination of adjacent streams. However, it may be necessary to monitor parasites especially in areas under cow-calf operations.


Author(s):  
Mathias Nzitiri Bwala

Irrigation is a dry season agricultural activity that was known to man for centuries. Agricultural runoff has been identified as the major nonpoint sources of pollution into surface waterbodies which changes the physico – chemical parameters thereby impacting on the biodiversity of such ecosystem. River Ngadda receives pollutants from the irrigational sites along the river bank. The study was aimed at assessing the impact of irrigation on fish biodiversity in river Ngadda, Maiduguri, Borno State, Nigeria. The objectives of the study were to determine the physico – chemical parameters and examine the fish biodiversity of the river. The river was divided into 4 sampling Stations. Water samples was collected biweekly for the period of 6 months from 4 sampling stations. The physico – chemical qualities (total nitrogen (TN), ammonium (NH4+), total phosphorus (TP), total organic carbon (TOC), total dissolved solids (TDS), turbidity (Tur) and total suspended solids (TSS) were determined using standard methods. Capture and recapture method was employed to determine the relative abundance of fish species using Lincoln index. The mean Total Nitrogen (TN) ranges from 5.02 mg/L – 8.31mg/L, mean ammonium (NH4+) ranges from 0.93mg/L – 2.01, mean Total phosphorous (TP) ranges from 0.07mg/L – 1.81mg/L. mean Total Organic Carbon (TOC) ranges 5.87mg/L – 7.45mg/L, mean Turbidity (Tur) ranges from 27mg/L – 31mg/L, mean Total Dissolved Solids (TDS) ranges 198NTU – 298NTU, mean Total Suspended Solids ranges from 34mg/L – 47mg/L and mean surface water Temperature ranges from 26°C – 28°C. A total of 4 families and 10 species of fishes were identified in the sampling stations.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AJAY KUMAR RAJAWAT ◽  
PRAVEEN KUMAR

An attempt has been made to study the Physico-chemical condition of water of Yamuna River at Gokul Barrage, Mathura, (UP). The time period of study was July 2015 to June 2016. Three water samples were selected from different sites in each month for study. The parameters studied were Temperature, Turbidity, pH, DO, BOD, COD, Total Dissolved Solids and Suspended Solids. Almost all the parameters were found above the tolerance limit.


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


Sign in / Sign up

Export Citation Format

Share Document