Genetic Diversity among North American Spring Wheat Cultivars: III. Cluster Analysis Based on Quantitative Morphological Traits

Crop Science ◽  
1997 ◽  
Vol 37 (3) ◽  
pp. 981-988 ◽  
Author(s):  
L. T. Beuningen ◽  
R. H. Busch
2004 ◽  
Vol 123 (4) ◽  
pp. 366-369 ◽  
Author(s):  
S. Maric ◽  
S. Bolaric ◽  
J. Martincic ◽  
I. Pejic ◽  
V. Kozumplik

Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 811-824 ◽  
Author(s):  
Danijela Ristic ◽  
Vojka Babic ◽  
Violeta Andjelkovic ◽  
Jelena Vancetovic ◽  
Snezana Mladenovic-Drinic ◽  
...  

Maize Research Institute ?Zemun Polje? genebank maintains a collection of landraces grouped into 18 agro-ecological collected from ex-Yugoslavia territories. The application and comparison of different marker systems are important for the characterization and use of maize landraces in breeding program, as potential sources of desirable traits. In this study, 15 morphological traits, 7 RAPD primers and 10 SSR primer pairs were applied to i) to determine genetic distance between 21 maize dent landraces and ii) compare results obtained on morphological and molecular markers. Phenotypic analysis showed high level of heterogeneity between landraces. Higher level of genetic diversity was obtained with SSR than with RAPD. Genetic distance mean value for RAPD data was 0.35 i.e. for SSR 0.48. Based on the morphological traits and molecular markers, unweighted pairgroup method (UPGMA) analysis was applied for cluster analysis, using statistical NTSYSpc program package. Cluster analysis of morphological and molecular markers distances did not show the same population grouping. Better agreement with agro-ecological data was obtained with RAPD markers. Correlations between dissimilarity matrices for different types of markers were low. Data obtained in this work could be useful for further study of a larger number of landraces, and conservation of genetic resources and their genetic diversity.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 957 ◽  
Author(s):  
Youssef Chegdali ◽  
Hassan Ouabbou ◽  
Abdelkhalid Essamadi ◽  
Fausto Cervantes ◽  
Maria Itria Ibba ◽  
...  

Landraces and old wheat cultivars display great genetic variation and constitute a valuable resource for the improvement of modern varieties, especially in terms of quality. Gluten quality is one of the major determinants of wheat quality, and it is greatly influenced by variation in the high molecular weight and low molecular weight glutenin subunits (HMW-GS and LMW-GS). Identification of novel allelic variants for either of the two groups of the gluten-forming proteins could greatly assist in the improvement of wheat gluten quality. In the present study, the allelic composition of the HMW- and LMW-GS of ninety-five durum wheat accessions was evaluated. These accessions included Moroccan cultivars and landraces and North American cultivars and were all conserved in the National Gene Bank from Morocco. In total, 20 cataloged alleles and 12 novel alleles were detected. For the HMW-GS, two alleles were found at the Glu-A1 locus, and seven different allelic variants were identified at the Glu-B1 locus. Among them, two alleles were new (alleles Glu-B1cp and co). Additionally, two of the analyzed accessions exhibited the Glu-D1d allele, suggesting the presence of the Glu-D1 locus introgression. For the LWM-GS, eight, ten and two alleles were identified at the Glu-A3, Glu-B3 and Glu-B2 loci, respectively. Among them, two new allelic variants were identified at the Glu-A3 locus, and seven new allelic variants were identified at the Glu-B3 locus. Overall, the Moroccan landraces exhibited a greater genetic diversity and a greater number of glutenin alleles compared to the Moroccan and North American durum wheat cultivars. The novel germplasm and glutenin alleles detected in this study could contribute to the improvement of durum wheat quality and the expansion of modern durum wheat genetic diversity.


1997 ◽  
Vol 122 (4) ◽  
pp. 529-535 ◽  
Author(s):  
Robert D. Marquard ◽  
Eric P. Davis ◽  
Emily L. Stowe

Forty selections, including 37 cultivars of Hamamelis spp., were evaluated for genetic similarities using randomly amplified polymorphic DNA (RAPD) markers. Cluster analysis identified seven groups, which included three groups of H. ×intermedia cultivars, two groups of H. vernalis, and one group each of H. mollis and H. japonica. Three H. ×intermedia cultivars, `Arnold Promise', `Westerstede', and `Carmine Red', did not group closely with the other 20 cultivars of H. ×intermedia. Selections of the North American species H. vernalis were quite distinct from the Asiatic selections. However, data are presented that suggest hybridization exist between Asiatic Hamamelis spp. and H. vernalis. Genetic similarities between known half-sib families provides evidence that the cultivar pairs `Arnold Promise'—`Winter Beauty' and `Carmine Red'—`Hiltingbury' are, themselves, not likely half-sibs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kassa Semagn ◽  
Muhammad Iqbal ◽  
Nikolaos Alachiotis ◽  
Amidou N’Diaye ◽  
Curtis Pozniak ◽  
...  

AbstractPrevious molecular characterization studies conducted in Canadian wheat cultivars shed some light on the impact of plant breeding on genetic diversity, but the number of varieties and markers used was small. Here, we used 28,798 markers of the wheat 90K single nucleotide polymorphisms to (a) assess the extent of genetic diversity, relationship, population structure, and divergence among 174 historical and modern Canadian spring wheat varieties registered from 1905 to 2018 and 22 unregistered lines (hereinafter referred to as cultivars), and (b) identify genomic regions that had undergone selection. About 91% of the pairs of cultivars differed by 20–40% of the scored alleles, but only 7% of the pairs had kinship coefficients of < 0.250, suggesting the presence of a high proportion of redundancy in allelic composition. Although the 196 cultivars represented eight wheat classes, our results from phylogenetic, principal component, and the model-based population structure analyses revealed three groups, with no clear structure among most wheat classes, breeding programs, and breeding periods. FST statistics computed among different categorical variables showed little genetic differentiation (< 0.05) among breeding periods and breeding programs, but a diverse level of genetic differentiation among wheat classes and predicted groups. Diversity indices were the highest and lowest among cultivars registered from 1970 to 1980 and from 2011 to 2018, respectively. Using two outlier detection methods, we identified from 524 to 2314 SNPs and 41 selective sweeps of which some are close to genes with known phenotype, including plant height, photoperiodism, vernalization, gluten strength, and disease resistance.


2018 ◽  
Vol 5 (01) ◽  
Author(s):  
M. P. CHAUHAN ◽  
H. K. SINGH ◽  
JAY KUMAR YADAV ◽  
M K. MAURYA

Sixty six genotypes of linseed were analysed for the morphological traits to investigate the genetic diversity between and within the genotypes. The field data was initially subjected to analysis of variance. There were highly significant differences among the genotypes for all the traits indicating the presence of variability among the genotypes and the possibility to undertake cluster analysis. The phenotypic divergence and relative importance were estimated by multivariate analysis. The cluster analysis classified linseed genotypes in to nine major groups. The maximum intercluster diversity was observed between cluster VIII and V. Based on mean performance of the genotypes and intercluster distance the crosses between ICAR Sel-1 and L-9, NDC 2005-34, H660, LCK 87042, NDL2005-22, GS335 is recommended to get use full transgressive sergeants in linseed.


2014 ◽  
Vol 50 (No. 2) ◽  
pp. 177-184 ◽  
Author(s):  
B. Gixhari ◽  
M. Pavelková ◽  
H. Ismaili ◽  
H. Vrapi ◽  
A. Jaupi ◽  
...  

In order to investigate the genetic diversity present in the pea germplasm stored in the Albanian genebank, we analyzed 28 local pea genotypes of Albanian origins for 23 quantitative morphological traits, as well as 14 retrotransposon-based insertion polymorphism (RBIP) molecular markers. The study of morphological characters carried out during three growing seasons (2010, 2011 and 2012) had the objective of characterization of traits useful in breeding programs. RBIP marker analysis revealed the genetic similarity in range from 0.06 to 0.45. ANOVA, principal component analysis (PCA) and cluster analysis was used to visualize the association among different traits. Most of the quantitative morphological traits showed significant differences. PCA and cluster analysis (Ward&rsquo;s method) carried out for morphological traits divided the local pea genotypes into three clusters. Finally, the study identified the agronomicaly important traits which will facilitate the maintenance and agronomic evaluation of the collections.


Sign in / Sign up

Export Citation Format

Share Document