The Behavior of Applied Phosphorus and Potassium in Organic Soil as Indicated by Soil Tests and the Relationship between Soil Tests, Green-Tissue Tests and Crop Yields

1953 ◽  
Vol 17 (3) ◽  
pp. 279-283 ◽  
Author(s):  
T. C. Bigger ◽  
J. F. Davis ◽  
Kirk Lawton
Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Zihao Guo ◽  
Jianen Gao ◽  
Pengcheng Sun ◽  
Shaohui Dou ◽  
Juan Li ◽  
...  

Gully Land Consolidation (GLC) is a proven method to create farmlands and increase crop yields in the Loess Hilly and Gully Region, China. However, GLC influences phreatic water transformation and might cause the farmlands water disasters, such as salinization and swamping. For exploring the influence of GLC on phreatic water transformation and mitigating disasters, a series of indoor experiments were conducted in the artificial rainfall hall. Then, we simulated the phreatic water transformation patterns under more conditions with HYDRUS-3D. Finally, an engineering demonstration in the field was performed to validate our research. The indoor experiments indicated that GLC could increase phreatic water outflow rate 4.39 times and phreatic water coefficient (PWC) 2.86 times with a considerable delay. After calibration and validation with experimental data, the HYDRUS-3D was used to simulate phreatic water transformation under more soil thickness and rainfall intensities. Accordingly, we summarized the relationship among PWC, rainfall intensities, and soil thickness, and therefore suggested a blind ditch system to alleviate farmlands disasters. Field application showed that a blind ditch system could avoid disasters with 3.2 times the phreatic water transformation rate compared to loess. Our research provides implications for sustainable land uses and management in the region with thick soil covers.


1980 ◽  
Vol 7 (1) ◽  
pp. 19-25 ◽  
Author(s):  
D. L. Hallock ◽  
A. H. Allison

Abstract The relative effectiveness of United States Gypsum granular 420 Landplaster Bulk (420-Bulk) and Texasgulf Gypsum (Tg Gypsum) were compared with finely ground anhydrite (Bagged-LP) as sources of supplemental Ca for Florigiant peanuts (Arachis hypogaea L.). Treatments included the above sources at rates of 605 kg/ha banded (61 cm) or 907 kg/ha broadcast (91-cm wide rows) of CaSO4 equivalent per unit area covered (double these rates of 420-Bulk and Bagged-LP also were applied in 1977). Times of application were planting, planting + ca 30 days, and early flowering stage. The experiments were located on Kenansville lfs (Arenic Hapludult) in 1977 and on Rumford lfs (Typic Hapludult) in 1978. The Ca treatments increased crop yields from 360 to 1,200 kg/ha and crop value (yield × price) from $343 to $889/ha over the check in 1977. Slightly lower yield increases were obtained in 1978 when dry conditions prevailed during fruit maturation. Kernel size grades were improved markedly by all Ca treatments in 1977. There was a definite trend both years (significant in 1978) toward higher productivity when the Ca sources were applied at the early flowering stage compared to earlier applications. No difference was noted between methods of application of Bagged-LP or Tg Gypsum in 1978. Double rates of Bagged-LP or 420-Bulk in 1977 did not increase productivity over the low rates. A single application of Bagged-LP was as effective as split applications in the 1978 test. Germinability of seed in 1977 averaged 85% or higher for all Ca treatments. Seed germination in 1978 averaged 75%, 69% and 74% in plots where Tg Gypsum, 420-Bulk or Bagged-LP was applied, respectively. Germination was lowest in the check plots both years. Germinability and seed-Ca contents were significantly higher in 1978 when the Ca sources were applied at the early flowering stage (ca July 1) than 15 days earlier. Seed-Ca contents both years and K contents in 1978 were significantly correlated with germinability. The correlation coefficients were only 0.4 in each case and the relationship was negative for K. In general, 420-Bulk, Tg Gypsum, or Bagged-LP were equally effective sources of supplemental Ca for peanuts. However, when fruit mature under very dry conditions 420-Bulk may be somewhat inferior to the other Ca sources especially when applied before early flowering.


2021 ◽  
Vol 11 (5) ◽  
pp. 1980
Author(s):  
Kazimierz Józefiak ◽  
Artur Zbiciak ◽  
Karol Brzeziński ◽  
Maciej Maślakowski

The paper presents classical and non-classical rheological schemes used to formulate constitutive models of the one-dimensional consolidation problem. The authors paid special attention to the secondary consolidation effects in organic soils as well as the soil over-consolidation phenomenon. The systems of partial differential equations were formulated for every model and solved numerically to obtain settlement curves. Selected numerical results were compared with standard oedometer laboratory test data carried out by the authors on organic soil samples. Additionally, plasticity phenomenon and non-classical rheological elements were included in order to take into account soil over-consolidation behaviour in the one-dimensional settlement model. A new way of formulating constitutive equations for the soil skeleton and predicting the relationship between the effective stress and strain or void ratio was presented. Rheological structures provide a flexible tool for creating complex constitutive relationships of soil.


2021 ◽  
Vol 4 (2) ◽  
pp. 34-47
Author(s):  
Anastasiia Zymaroieva ◽  
Tetiana Fedoniuk ◽  
Svitlana Matkovska ◽  
Olena Andreieva ◽  
Victor Pazych

Global food security largely depends on the crop yield increase, so the study of the yield-limiting factors of potato (the second bread) is a pressing issue today. This study determines the contribution of the agroecological factors, namely, bioclimatic variables, soil indicators, and factors of landscape diversity, to the variation in potato yields. Conducted in Polissya and Forest-steppe zones of Ukraine during 1991–2017, this study has not only addressed the relationship between ecological determinants and potato yields, but also considered crop yields as a dynamic system. The dynamics of potato yields from the mid-1990s to the present is described by a log-logistic model. There are statistically significant regression dependencies between potato yield parameters and agroecological factors. Potato yield is dependent on the diversity of landscape cover. The relationship between yield parameters and landscape-ecological diversity is non-linear, which determines the presence of optimal landscape structure for the highest potato yields. Among climatic factors, the continental climate is of the greatest importance for potato yield. The high sensitivity of potato yield parameters to soil indices was found, and mostly the soil texture components (silt content), which largely determines the potato yield spatial variation.


1992 ◽  
Vol 70 (6) ◽  
pp. 1597-1603 ◽  
Author(s):  
Donald S. Gamble ◽  
Shahamat U. Khan

Equilibrium and kinetics parameters have been evaluated at 25.0 °C for the heterogeneous catalysis of atrazine hydrolysis in slurries of a chemically characterized mineral soil. The fraction of acidic sites that accounts for sorption capacity, and the sorption equilibrium function resemble those for humic acid and organic soil. Sorption and desorption half-lives increased with increasing coverage of sorption sites. The sorption half-lives ranged from 3.6 to 735 days. The desorption half-lives ranged from 1 to 11 days. The hydrolysis half-lives ranged from 9.6 to 168 days and are consistent with Brönsted acid catalysis theory. The relationship of independent variables to data scatter has been analyzed. The information obtained should be useful for water and solute transport models.


2020 ◽  
Vol 158 (3) ◽  
pp. 194-205
Author(s):  
J. C. Dlamini ◽  
D. Chadwick ◽  
J. M. B. Hawkins ◽  
J. Martinez ◽  
D. Scholefield ◽  
...  

AbstractOrganic carbon (C) plays an essential role in the denitrification process as it supplies energy for N2O, N2 and CO2 producing reactions. The objectives of this study were to: (i) rank the reactivity of different C compounds found in manures based on their availability for denitrification and (ii) explore C-quality in different C sources based on their capacity to promote denitrification. Evaluation of different C-sources in promoting denitrification was conducted based on the molar ratio of CO2 production to NO3− reduction after incubation. Results of the first experiment (a 12-day investigation) showed that glucose and glucosamine were highly reactive C compounds with all applied NO3− being exhausted by day 3, and glucosamine had significantly high amount of NH4+-N present at end of the experiment. The glucose and glucosamine treatments resulted in significantly greater cumulative CO2 production, compared to the other treatments. In the second experiment (a 9-day investigation), all NO3− had been depleted by day 6 and 9 from acetic acid and glucose, respectively, and the greatest cumulative CO2 production was from acetic acid. The CO2 appearance to NO3− molar ratios revealed that glucose and glucosamine were compounds with highly available C in the first experiment. In the second experiment, the pig slurry and acetic acid were found to be C-sources that promoted potential denitrification. The application of slurry to soil results in the promotion of denitrification and this depends on the availability of the C compounds it contains. Understanding the relationship between C availability and denitrification potential is useful for developing denitrification mitigation strategies for organic soil amendments.


1963 ◽  
Vol 61 (3) ◽  
pp. 299-308 ◽  
Author(s):  
D. R. Hodgson ◽  
R. Holliday ◽  
F. Cope

1. A review of land restoration problems in relation to the soil depth required for successful crops showed that factual information on this orthodox method of restoration was inadequate.2. A field trial sited on pulverized fuel ash is described in which the relationship between crop yield and soil depth at a range of fertilizer levels was determined; kale, oats, rape, barley and potatoes were the test crops.3. The crops were divided into two groups, sensitive (kale and barley) and tolerant (oats, rape, potatoes) to ash toxicity, on the basis of their response to soil depth at the high fertilizer level. Quadratic expressions relating yield to soil depth, over the range 3–36 in. at each fertilizer level were fitted to the data for each crop group.4. Yield isoquants, derived from the fertilizer response curves at each soil depth, enabled soil depth-fertilizer level combinations to be ascertained for producing a given level of crop yield. Fertilizer could be substituted for soil more effectively for tolerant than sensitive crops.5. A 12 in. cover of soil together with 1½ times the normal farm fertilizer dressing for the crop was the minimum for acceptable yields. Fertilizer use may have to be increased to twice normal dressings to maintain yields if soil depths are reduced to below 12 in.6. Crop yields were not increased by a soil covering greater than 24 in. deep.


Sign in / Sign up

Export Citation Format

Share Document