Combating Climate Change Through Enhanced Weathering of Agricultural Soils

Elements ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 253-258 ◽  
Author(s):  
M. Grace Andrews ◽  
Lyla L. Taylor

Rising levels of atmospheric carbon dioxide (CO2) are driving increases in global temperatures. Enhanced weathering of silicate rocks is a CO2 removal technology that could help mitigate anthropogenic climate change. Enhanced weathering adds powdered silicate rock to agricultural lands, accelerating natural chemical weathering, and is expected to rapidly draw down atmospheric CO2. However, differences between enhanced and natural weathering result in significant uncertainties about its potential efficacy. This article summarizes the research into enhanced weathering and the uncertainties of enhanced weathering due to the key differences with natural weathering, as well as future research directions.

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


Author(s):  
Eelco J. Rohling

In 2015, the annual mean global atmospheric carbon dioxide (CO2) level surpassed 400 parts per million (ppm; Figure 1.1), and we know very well that this rise is caused by human activities (Figure 1.2). It was the first time in 3 million years that such a level had been reached. Crossing this level has caused widespread concern among climate scientists, and not least among those called pale climatologists, who work on natural climate variability in prehistoric times, before humans. Over the last few decades, researchers have been repeatedly raising the alarm that emissions of CO2, along with those of other greenhouse gases, are getting dangerously out of control and that urgent remedial action is needed. With the crossing of the 400 ppm threshold, this sense of urgency reached a climax: at the Conference of Parties 21 meeting in Paris—also known as COP21 or the 2015 Paris Climate Conference—broad interna¬tional political agreement was reached to limit global warming to a maximum of 2°C, and if at all possible 1.5° C, by the end of this century. If one calculates this through, this implies a commitment for society to operate on zero net carbon emissions well before 2050, along with development and large-scale application of methods for CO2 removal from the climate system. (Scientists focus on carbon (C) emissions when they discuss emissions because it helps in calculating CO2 changes produced by the processing of specific volumes/ masses of fossil fuel hydrocarbons.) Clearly, the challenge is enormous, especially given that even implementing all the pledges made since COP21 would still allow warming to reach about 3°C by 2100. But, regardless, the agreement was ground breaking. It was a marker of hope, optimism, and international motivation to tackle climate change. Moreover, there are concerns about the stated COP21 targets. First, the proposed 2°C or 1.5°C limits to avoid 2 “dangerous” climate impacts may sound good, but there is no specific scientific basis for picking these particular numbers. Second, the implied “end of this century” deadline is an arbitrary moment in time.


2020 ◽  
Vol 45 (1) ◽  
pp. 83-112 ◽  
Author(s):  
Scott C. Doney ◽  
D. Shallin Busch ◽  
Sarah R. Cooley ◽  
Kristy J. Kroeker

Rising atmospheric carbon dioxide (CO2) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO2 and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated CO2 marine environments, widespread biological impacts of human-driven ocean acidification have been posited, ranging from changes in organism physiology and population dynamics to altered communities and ecosystems. Acidification, in conjunction with other climate change–related environmental stresses, particularly under future climate change and further elevated atmospheric CO2 levels, potentially puts at risk many of the valuable ecosystem services that the ocean provides to society, such as fisheries, aquaculture, and shoreline protection. Thisreview emphasizes both current scientific understanding and knowledge gaps, highlighting directions for future research and recognizing the information needs of policymakers and stakeholders.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 182 ◽  
Author(s):  
Yu Chen ◽  
Clément Martin ◽  
Junior Corneille Fingu Mabola ◽  
François Verheggen ◽  
Zhenying Wang ◽  
...  

Climate change is a major environmental concern and is directly related to the increasing concentrations of greenhouse gases. The increase in concentrations of atmospheric carbon dioxide (CO2), not only affects plant growth and development, but also affects the emission of plant organic volatile compounds (VOCs). Changes in the plant odor profile may affect the plant-insect interactions, especially the behavior of herbivorous insects. In this study, we compared the foraging behavior of corn leaf aphid (Rhopalosiphum maidis) on barley (Hordeum vulgare L.) seedlings grown under contrasted CO2 concentrations. During the dual choice bioassays, the winged and wingless aphids were more attracted by the VOCs of barley seedlings cultivated under ambient CO2 concentrations (aCO2; 450 ppm) than barley seedlings cultivated under elevated CO2 concentrations (eCO2; 800 ppm), nymphs were not attracted by the VOCs of eCO2 barley seedlings. Then, volatile compositions from 14-d-old aCO2 and eCO2 barley seedlings were investigated by GC-MS. While 16 VOCs were identified from aCO2 barley seedlings, only 9 VOCs were found from eCO2 barley seedlings. At last, we discussed the potential role of these chemicals observed during choice bioassays. Our findings lay foundation for functional response of corn leaf aphid under climate change through host plant modifications.


2021 ◽  
Author(s):  
Anthony Dosseto ◽  
Nathalie Vigier ◽  
Renaud Joannes-Boyau ◽  
Ian Moffat ◽  
Tejpal Singh ◽  
...  

Chemical weathering of continental rocks plays a central role in regulating the carbon cycle and the Earth’s climate (Walker et al., 1981; Berner et al., 1983), accounting for nearly half the consumption of atmospheric carbon dioxide globally (Beaulieu et al., 2012). However, the role of climate variability on chemical weathering is still strongly debated. Here we focus on the Himalayan range and use the lithium isotopic composition of clays in fluvial terraces to show a tight coupling between climate change and chemical weathering over the past 40 ka. Between 25 and 10 ka ago, weathering rates decrease despite temperature increase and monsoon intensification. This suggests that at this timescale, temperature plays a secondary role compared to runoff and physical erosion, which inhibit chemical weathering by accel-erating sediment transport and act as fundamental controls in determining the feedback between chemical weathering and atmospheric carbon dioxide.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2646
Author(s):  
Eloísa Agüera ◽  
Purificación de la Haba

The biochemical, biological, and morphogenetic processes of plants are affected by ongoing climate change, causing alterations in crop development, growth, and productivity. Climate change is currently producing ecosystem modifications, making it essential to study plants with an improved adaptive capacity in the face of environmental modifications. This work examines the physiological and metabolic changes taking place during the development of sunflower plants due to environmental modifications resulting from climate change: elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures. Variations in growth, and carbon and nitrogen metabolism, as well as their effect on the plant’s oxidative state in sunflower (Helianthus annus L.) plants, are studied. An understanding of the effect of these interacting factors (elevated CO2 and elevated temperatures) on plant development and stress response is imperative to understand the impact of climate change on plant productivity.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 377 ◽  
Author(s):  
Xiao-cong Zhu ◽  
Dong-rui Di ◽  
Ming-guo Ma ◽  
Wei-yu Shi

Greenhouse gases emitted from soil play a crucial role in the atmospheric environment and global climate change. The theory and technique of detecting stable isotopes in the atmosphere has been widely used to an investigate greenhouse gases from soil. In this paper, we review the current literature on greenhouse gases emitted from soil, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We attempt to synthesize recent advances in the theory and application of stable isotopes in greenhouse gases from soil and discuss future research needs and directions.


Sign in / Sign up

Export Citation Format

Share Document