Immune Cell Atlas and Dynamics in Mouse Liver Injury and Immunomodulatory of MSC Therapy by High-Dimensional Analysis

2018 ◽  
Author(s):  
Jingqi Liu ◽  
Xiaotian Dong ◽  
Xudong Feng ◽  
Yanping Xu ◽  
Qiaoling Pan ◽  
...  
2020 ◽  
Vol 4 (2) ◽  
pp. 82-92
Author(s):  
Jessica S. W. Borgers ◽  
Richard P. Tobin ◽  
Victoria M. Vorwald ◽  
Joshua M. Smith ◽  
Dana M. Davis ◽  
...  

2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii10-ii10
Author(s):  
Dionysios C Watson ◽  
Defne Bayik ◽  
Matthew Grabowski ◽  
Manmeet Ahluwalia ◽  
Alireza Mohammadi ◽  
...  

Abstract Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. GBM remains an incurable disease, with a median survival ~20 months. Complex intercellular interactions within the tumor microenvironment and spatial heterogeneity have challenged and impeded therapeutic efficacy. The non-contrast-enhancing (by T1-weighted MRI) rim of GBM is not always safely resectable and represents a major source of recurrence. We hypothesized that differential immune infiltration is an underlying factor of spatial heterogeneity in GBM, particularly in the non-contrast-enhancing tumor rim. Methods Five patients with newly diagnosed GBM (ages 53–84) were recruited to a device feasibility study (NCT04545177) utilizing an intraoperative high-resolution MRI-based navigation system coupled with the NICO Myriad (a non-ablative semi-automated resection tool) and a coupled automated biological Tissue Preservation System (NICO APS) to sample spatially mapped regions of tumors in a reproducible and minimally destructive manner. We obtained brain tumor tissue from: (a) tumor core, (b) contrast-enhancing tumor rim and (c) non-contrast-enhancing tumor rim. Downstream processing consisted of digestion of tumor tissue (Miltenyi human tumor digestion kit) for subsequent single-cell isolation, viability assessment and immediate staining for multiparametric flow cytometry for immune profiling. Results Viability varied across sampled regions (median 85%, range 52–100%). With the exception of 1 sample, viability was >70% in all specimens. High-dimensional analysis with 26 marker flow cytometry revealed spatial heterogeneity in the frequency of myeloid-derived suppressor cell subsets, regulatory T cells, CD8+ T cells, as well as expression of T cell activation and exhaustion markers. Conclusions Semi-automated, spatially mapped intraoperative sampling of GBM with high viability of specimens is feasible and reproducible with the NICO Myriad and APS devices. High-dimensional analysis of immune cells in the GBM microenvironment captured the spatial heterogeneity of GBM. Future studies will expand on these observations by analyzing more patient specimens in combination with multiple omics assays.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura Ferrer-Font ◽  
Palak Mehta ◽  
Phoebe Harmos ◽  
Alfonso J Schmidt ◽  
Sally Chappell ◽  
...  

Single cell isolation from helminth-infected murine intestines has been notoriously difficult, due to the strong anti-parasite type 2 immune responses that drive mucus production, tissue remodeling and immune cell infiltration. Through the systematic optimization of a standard intestinal digestion protocol, we were able to successfully isolate millions of immune cells from the heavily infected duodenum. To validate that these cells gave an accurate representation of intestinal immune responses, we analyzed them using a high-dimensional spectral flow cytometry panel and confirmed our findings by confocal microscopy. Our cell isolation protocol and high-dimensional analysis allowed us to identify many known hallmarks of anti-parasite immune responses throughout the entire course of helminth infection and has the potential to accelerate single-cell discoveries of local helminth immune responses that have previously been unfeasible.


2015 ◽  
Vol 53 (12) ◽  
Author(s):  
AB Widera ◽  
L Pütter ◽  
S Leserer ◽  
G Campos ◽  
K Rochlitz ◽  
...  

2019 ◽  
Vol 17 (12) ◽  
pp. 1245-1256 ◽  
Author(s):  
Yuting Jin ◽  
Changyong Li ◽  
Dongwei Xu ◽  
Jianjun Zhu ◽  
Song Wei ◽  
...  

AbstractNotch signaling plays important roles in the regulation of immune cell functioning during the inflammatory response. Activation of the innate immune signaling receptor NLRP3 promotes inflammation in injured tissue. However, it remains unknown whether Jagged1 (JAG1)-mediated myeloid Notch1 signaling regulates NLRP3 function in acute liver injury. Here, we report that myeloid Notch1 signaling regulates the NLRP3-driven inflammatory response in ischemia/reperfusion (IR)-induced liver injury. In a mouse model of liver IR injury, Notch1-proficient (Notch1FL/FL) mice receiving recombinant JAG1 showed a reduction in IR-induced liver injury and increased Notch intracellular domain (NICD) and heat shock transcription factor 1 (HSF1) expression, whereas myeloid-specific Notch1 knockout (Notch1M-KO) aggravated hepatocellular damage even with concomitant JAG1 treatment. Compared to JAG1-treated Notch1FL/FL controls, Notch1M-KO mice showed diminished HSF1 and Snail activity but augmented NLRP3/caspase-1 activity in ischemic liver. The disruption of HSF1 reduced Snail activation and enhanced NLRP3 activation, while the adoptive transfer of HSF1-expressing macrophages to Notch1M-KO mice augmented Snail activation and mitigated IR-triggered liver inflammation. Moreover, the knockdown of Snail in JAG1-treated Notch1FL/FL livers worsened hepatocellular functioning, reduced TRX1 expression and increased TXNIP/NLRP3 expression. Ablation of myeloid Notch1 or Snail increased ASK1 activation and hepatocellular apoptosis, whereas the activation of Snail increased TRX1 expression and reduced TXNIP, NLRP3/caspase-1, and ROS production. Our findings demonstrated that JAG1-mediated myeloid Notch1 signaling promotes HSF1 and Snail activation, which in turn inhibits NLRP3 function and hepatocellular apoptosis leading to the alleviation of IR-induced liver injury. Hence, the Notch1/HSF1/Snail signaling axis represents a novel regulator of and a potential therapeutic target for liver inflammatory injury.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A528-A528
Author(s):  
Lin Ma ◽  
Jian-Hua Mao ◽  
Mary Helen Barcellos-Hoff ◽  
Jade Moore

BackgroundCheckpoint inhibitors can induce robust and durable responses in a subset of patients. Extending this benefit to more patients could be facilitated by better understanding of how interacts with immune cells with the tumor microenvironment, which is a critical barrier to control both local and systemic disease. The composition and pattern of the immune infiltrate associates with the likelihood of response to immunotherapy. Inflamed tumors that exhibit a brisk immune cell infiltrate are responsive, while those in which immune cells are completely or partially excluded are not. Transforming growth factor β (TGFβ) is immunosuppressive and associated with the immune excluded phenotype.MethodsUsing an immune competent mammary tumor derived transplant (mTDT) model recently developed in our lab, exhibits inflamed, excluded or deserts immune infiltrate phenotypes based on localization of CD8 lymphocytes. Using whole transcriptome deep sequencing, cytof, and PET-CT imaging, we evaluated the tumor, microenvironment, and immune pathway activation among immune infiltrate phenotypes.ResultsThree distinct inflamed tumors phenotypes were identified: ‘classically’ inflamed characterized by pathway evidence of increased CD8+ T cells and decreased PD-L1 expression, inflamed tumors with pathways indicative of neovascularization and STAT3 signaling and reduced T cell mobilization, and an inflamed tumor with increased immunosuppressive myeloid phenotypes. Excluded tumors were characterized by TGFβ gene expression and pro-inflammatory cytokine signaling (e.g. TNFα, IL1β), associated with decreased leukocytes homing and increased immune cell death of cells. We visualized and quantified TGFβ activity using PET-CT imaging of 89Zr-fresolimumab, a TGFβ neutralizing antibody. TGFβ activity was significantly increased in excluded tumors compared to inflamed or desert tumors, which was supported by quantitative pathology (Perkin Elmer) of its canonical signaling target, phosphorylated SMAD2 (pSMAD2). pSMAD2 was positively correlated with PD-L1 expression in the stroma of excluded tumors. In contrast, in inflamed tumors, TGFβ activity positively correlated with increased F4/80 positive macrophages and negatively correlated with expression of PD-L1. CyTOF analysis of tumor and spleen immune phenotypes revealed increased trafficking of myeloid cells in mice bearing inflamed tumors compared to excluded and deserts.ConclusionsThe immunocompetent mTDT provides a model that bridges the gap between the immune landscape and tumor microenvironment. Integration of these high-dimensional data with further studies of response to immunotherapies will help to identify tumor features that favor response to treatment or the means to convert those that are unresponsive.


Allergy ◽  
2021 ◽  
Author(s):  
Tali Czarnowicki ◽  
Hyun Je Kim ◽  
Axel P Villani ◽  
Jacob Glickman ◽  
Ester Del Duca ◽  
...  

2003 ◽  
Vol 55 (10) ◽  
pp. 1413-1418 ◽  
Author(s):  
R. P. Hewawasam ◽  
K. A. P. W. Jayatilaka ◽  
C. Pathirana ◽  
L. K. B. Mudduwa

Sign in / Sign up

Export Citation Format

Share Document