Hydrolysis for Optimal Sugar Release from Macroalgal Feedstock for Bioethanol Production

2020 ◽  
Author(s):  
Deepthi Hebbale ◽  
T.V. Ramachandra
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Georgios Bekiaris ◽  
Jane Lindedam ◽  
Clément Peltre ◽  
Stephen R. Decker ◽  
Geoffrey B. Turner ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 486
Author(s):  
Olga N. Tsolcha ◽  
Vasiliki Patrinou ◽  
Christina N. Economou ◽  
Marianna Dourou ◽  
George Aggelis ◽  
...  

Biofuels produced from photosynthetic microorganisms such as microalgae and cyanobacteria could potentially replace fossil fuels as they offer several advantages over fuels produced from lignocellulosic biomass. In this study, energy production potential in the form of bioethanol was examined using different biomasses derived from the growth of a cyanobacteria-based microbial consortium on a chemical medium and on agro-industrial wastewaters (i.e., dairy wastewater, winery wastewater and mixed winery–raisin effluent) supplemented with a raisin residue extract. The possibility of recovering fermentable sugars from a microbial biomass dominated by the filamentous cyanobacterium Leptolynbgya sp. was demonstrated. Of the different acid hydrolysis conditions tested, the best results were obtained with sulfuric acid 2.5 N for 120 min using dried biomass from dairy wastewater and mixed winery–raisin wastewaters. After optimizing sugar release from the microbial biomass by applying acid hydrolysis, alcoholic fermentation was performed using the yeast Saccharomyces cerevisiae. Raisin residue extract was added to the treated biomass broth in all experiments to enhance ethanol production. Results showed that up to 85.9% of the theoretical ethanol yield was achieved, indicating the potential use of cyanobacteria-based biomass in combination with a raisin residue extract as feedstock for bioethanol production.


2021 ◽  
Vol 11 (21) ◽  
pp. 9949
Author(s):  
William Turner ◽  
Darren Greetham ◽  
Michal Mos ◽  
Michael Squance ◽  
Jason Kam ◽  
...  

Miscanthus is a fast-growing perennial grass that attracts significant attention for its potential application as a feedstock for bioethanol production. This report explores the difference in the lignocellulosic composition of various Miscanthus cultivars, including Miscanthus × giganteus cultivated at the same location (mainly Lincoln, UK). It also assesses the sugar release profiles and mineral composition profiles of five Miscanthus cultivars harvested over a growing period from November 2018 to February 2019. The results showed that Miscanthus × giganteus contains approximately 45.5% cellulose, 29.2% hemicellulose and 23.8% lignin (dry weight, w/w). Other cultivars of Miscanthus also contain high quantities of carbohydrates (cellulose 41.1–46.0%, hemicellulose 24.3–32.6% and lignin 21.4–24.9%). Pre-treatment of Miscanthus using dilute acid followed by enzymatic hydrolysis released 63.7–80.2% of the theoretical glucose content. Fermentation of a hydrolysate of Miscanthus × giganteus using Saccharomyces cerevisiae NCYC2592 produced 13.58 ± 1.11 g/L of ethanol from 35.13 ± 0.46 g/L of glucose, corresponding to a yield of 0.148 g/g dry weight Miscanthus biomass. Scanning electron microscopy was used to study the morphology of raw and hydrolysed Miscanthus samples, which provided visual proof of Miscanthus lignocellulose degradation in these processes. The sugar release profile showed that a consequence of Miscanthus plant growth is an increase in difficulty in releasing monosaccharides from the biomass. The potassium, magnesium, sodium, sulphur and phosphorus contents in various Miscanthus cultivars were analysed. The results revealed that these elements were slowly lost from the plants during the latter part of the growing season, for a specific cultivar, until February 2019.


2015 ◽  
Vol 69 (5) ◽  
pp. 518-531
Author(s):  
Tokiya Yaguchi ◽  
Makoto Iwasaki ◽  
Youichiro Isono

2019 ◽  
Vol 12 (2) ◽  
pp. 464-471
Author(s):  
Kamlesh R. Shah ◽  
Rani Vyas ◽  
Gayatriben Patel

ChemSusChem ◽  
2012 ◽  
Vol 6 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Christos K. Nitsos ◽  
Konstantinos A. Matis ◽  
Kostas S. Triantafyllidis

Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 121074
Author(s):  
Nisha Singh ◽  
Ravi P. Gupta ◽  
Suresh K. Puri ◽  
Anshu S. Mathur

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


Sign in / Sign up

Export Citation Format

Share Document