GABA B Receptor Activation Attenuates Neuronal Pyroptosis via the DDX3X/NLRP3 Pathway in Postcardiac Arrest Brain Injury

2021 ◽  
Author(s):  
Ye Sun ◽  
Jinying Li ◽  
Haikuo Wu ◽  
Ziwei Zhao ◽  
Youhai Jia ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Antonio Verduzco-Mendoza ◽  
Paul Carrillo-Mora ◽  
Alberto Avila-Luna ◽  
Arturo Gálvez-Rosas ◽  
Adriana Olmos-Hernández ◽  
...  

Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Li-Juan Min ◽  
Masaki Mogi ◽  
Kana Tsukuda ◽  
Hui-Yu Bai ◽  
Bao-Shuai Shan ◽  
...  

Objectives: Cerebrovascular damage could breakdown amyloid-β (Aβ) clearance and accelerate Aβ deposition. We examined the interaction between ischemic brain damage and Aβ deposition in cognitive function, focusing on the roles of angiotensin II type 2 (AT 2 ) receptor in vascular smooth muscle cells (VSMC). Methods: Male wild-type mice (WT) or the mice with VSMC-specific AT 2 receptor overexpression (smAT 2 ) were used. Mice were subjected to ICV injection of Aβ1-40. Ischemic brain injury was induced by bilateral common carotid artery occlusion (BCCAO) 24 hours after Aβ1-40 injection. Three weeks after Aβ1-40 injection, cognitive function was evaluated by the Morris water maze test. Brain samples obtained 8 days after Aβ1-40 injection were used to study the related signals. Results: ICV injection of Aβ1-40 in WT showed impaired cognitive function (arriving time to platform at day 5: control, 26.53±4.46 sec; Aβ, 65.35±7.44 sec), whereas BCCAO alone did not decline significantly cognitive function. In contrast, BCCAO following Aβ1-40 injection exhibited more marked cognitive impairment (84.27±8.00 sec) compared to Aβ injection alone with the increase in expressions of NADPH oxidase subunits such as p22phox and p67phox in the hippocampus of mice. Aβ1-40 injection with BCCAO tended to increase the mRNA levels of inflammatory cytokines such as MCP-1 and TNFα. BCCAO significantly enhanced the expression of Aβ clearance factor, RAGE (receptor for advanced glycation end product). Aβ1-40 injection did not increase the neuron pyknosis in the hippocampus, whereas the number of neuron pyknosis was increased significantly with BCCAO (control, 6.33±0.88/field; Aβ with BCCAO, 46.33±4.10/field). On the other hand, smAT 2 did not show cognitive impairment, the changes of the expression for NADPH oxidase subunits and inflammatory cytokines, and neuron pyknosis, which were induced by BCCAO with/without Aβ1-40 injection in WT. Conclusion: Ischemic brain injury could enhance Aβ-induced cognitive impairment with possible involvement of enhanced oxidative stress, neuron degeneration, and breakdown of RAGE-mediated Aβ clearance. AT 2 receptor activation in VSMC could play inhibitory roles in the cognitive decline induced by ischemic brain damage and Aβ deposition.


AGE ◽  
2012 ◽  
Vol 35 (5) ◽  
pp. 1621-1636 ◽  
Author(s):  
Lital Rachmany ◽  
David Tweedie ◽  
Yazhou Li ◽  
Vardit Rubovitch ◽  
Harold W. Holloway ◽  
...  

1997 ◽  
Vol 77 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Steven J. Tavalin ◽  
Earl F. Ellis ◽  
Leslie S. Satin

Tavalin, Steven J., Earl. F. Ellis, and Leslie S. Satin. Inhibition of the electrogenic Na pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J. Neurophysiol. 77: 632–638, 1997. We previously characterized the electrophysiological response of cortical neurons to a brief sublethal stretch-injury using an in vitro model of traumatic brain injury. This model revealed that cortical neurons undergo a stretch-induced delayed depolarization (SIDD) of their resting membrane potential (RMP) which is ∼10 mV in magnitude. SIDD is dependent on N-methyl-d-aspartate (NMDA) receptor activation, neuronal firing, and extracellular calcium for its induction but not its maintenance. SIDD was maximal 1 h after the insult and required incubation at 37°C. The present study examined the mechanism mediating SIDD and its relation to glutamate receptor activation. The Na pump inhibitor ouabain was used to assess the contribution of the Na pump to the RMP of control and stretched neurons using whole cell patch-clamp techniques. The nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine and a polyethylene glycol conjugate of superoxide dismutase were used to assess whether NO or superoxide anion, respectively, were involved in the induction of SIDD. Neurons were exposed to exogenous glutamate in the absence of cell stretch to determine whether glutamate alone can mimic SIDD. We report that SIDD is mediated by Na pump inhibition and is likely to result from reduced energy levels since the RMP of neurons dialyzed with a pipette solution containing 5 mM ATP were identical to controls. NO, but not superoxide anion, also may contribute to SIDD. A 3-min exposure to 10 μM glutamate produced a SIDD-like depolarization also associated with Na pump inhibition. The results suggest that Na pump inhibition secondary to alterations in cellular energetics underlies SIDD. Na pump inhibition due to glutamate exposure may contribute to traumatic brain injury or neurodegenerative diseases linked to glutamate receptor activation.


2016 ◽  
Vol 310 (7) ◽  
pp. H785-H801 ◽  
Author(s):  
Zoltán Benyó ◽  
Éva Ruisanchez ◽  
Miriam Leszl-Ishiguro ◽  
Péter Sándor ◽  
Pál Pacher

The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Changmeng Cui ◽  
Sixin Song ◽  
Jianzhong Cui ◽  
Yan Feng ◽  
Junling Gao ◽  
...  

Traumatic brain injury (TBI) is a worldwide phenomenon which results in significant neurological and cognitive deficits in humans. Vitamin D (VD) is implicated as a therapeutic strategy for various neurological diseases now. Recently, inhibition of the NADPH oxidase (NOX2) was reported to protect against oxidative stress (ROS) production. However, whether alterations in NOX2expression and NOX activity are associated with calcitriol (active metabolite of VD) treatment following TBI remains unclear. In the present study, rats were randomly assigned to the sham, TBI, and calcitriol-treated groups. Calcitriol was administered intraperitoneally (2 μg/kg) at 30 min, 24 h, and 48 h after TBI insult. We observed that calcitriol treatment alleviated neurobehavioral deficits and brain edema following TBI. At the molecular levels, administration of calcitriol activated the expression of VDR and downregulated NOX2as well as suppressed apoptosis cell rate in the hippocampus CA1 region of TBI rats. In conclusion, our findings indicate that the protective effects of calcitriol may be related to the modulation of NADPH oxidase and thereby ultimately inhibited the progression of apoptosis. Calcitriol may be promising as a protective intervention following TBI, and more study is warranted for its clinical testing in the future.


2016 ◽  
Vol 37 (1) ◽  
pp. 39-51 ◽  
Author(s):  
He Wu ◽  
Tao Wu ◽  
Xiaoning Han ◽  
Jieru Wan ◽  
Chao Jiang ◽  
...  

Inflammatory responses mediated by prostaglandins such as PGE2 may contribute to secondary brain injury after intracerebral hemorrhage (ICH). However, the cell-specific signaling by PGE2 receptor EP2 differs depending on whether the neuropathic insult is acute or chronic. Using genetic and pharmacologic approaches, we investigated the role of EP2 receptor in two mouse models of ICH induced by intrastriatal injection of collagenase or autologous arterial whole blood. We used middle-aged male mice to enhance the clinical relevance of the study. EP2 receptor was expressed in neurons but not in astrocytes or microglia after collagenase-induced ICH. Brain injury after collagenase-induced ICH was associated with enhanced cellular and molecular inflammatory responses, oxidative stress, and matrix metalloproteinase (MMP)-2/9 activity. EP2 receptor deletion exacerbated brain injury, brain swelling/edema, neuronal death, and neurobehavioral deficits, whereas EP2 receptor activation by the highly selective agonist AE1-259-01 reversed these outcomes. EP2 receptor deletion also exacerbated brain edema and neurologic deficits in the blood ICH model. These findings support the premise that neuronal EP2 receptor activation by PGE2 protects brain against ICH injury in middle-aged mice through its anti-inflammatory and anti-oxidant effects and anti-MMP-2/9 activity. PGE2/EP2 signaling warrants further investigation for potential use in ICH treatment.


Sign in / Sign up

Export Citation Format

Share Document