scholarly journals RNA interference approaches for plant disease control

BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 469-477
Author(s):  
Yen-Wen Kuo ◽  
Bryce W Falk

Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.

2021 ◽  
Author(s):  
Kasem Soytong ◽  
Somdej Kahonokmedhakul ◽  
Jiaojiao Song ◽  
Rujira Tongon

Chaetomium species for plant disease control are reported to be antagonize many plant pathogens. It is a new broad spectrum biological fungicide from Chaetomium species which firstly discovered and patented No. 6266, International Code: AO 1 N 25/12, and registered as Ketomium® mycofungicide for plant disease control in Thailand, Laos, Vietnam, Cambodia and China. Chaetoimum biofungicide and biostimulants are applied to implement integrated plant disease control. It showed protective and curative effects in controlling plant disease and promoting plant growth. It has been successfully applied to the infested soils with integrated cultural control for the long-term protection against rice blast (Magnaporte oryzae), durian and black Pepper rot (Piper nigram L.) (Phytophthora palmivora), citrus rot (Phytophthora parasitica) and strawberry rot (Fragaria spp.) caused by Phytophthora cactorum, wilt of tomato (Fusarium oxysporum f. sp. lycopersici), basal rot of corn (Sclerotium rolfsii) and anthracnose (Colletotrichum spp.) etc. Further research is reported on the other bioactive compounds from active strains of Chaetomium spp. We have discovered various new compounds from Ch. globosum, Ch. cupreum, Ch. elatum, Ch. cochliodes, Ch. brasiliense, Ch. lucknowense, Ch. longirostre and Ch. siamense. These new compounds are not only inhibiting human pathogens (anti-malaria, anti-tuberculosis, anti-cancer cell lines and anti-C. albicans etc) but also plant pathogens as well. These active natural products from different strains of Chaetomium spp. are further developed to be biodegradable nanoparticles from active metabolites as a new discovery of scientific investigation which used to induce plant immunity, namely microbial degradable nano-elicitors for inducing immunity through phytoalexin production in plants e.g. inducing tomato to produce alpha-tomaline against Fusarium wilt of tomato, capsidiol against chili anthracnose, sakuranitin and oryzalexin B against rice blast, scopletin and anthrocyaidin against Phytophthora or Pythium rot Durian and scoparone against Phytophthora or Pythium rot of citrus. Chaetomium biofungicide can be applied instead of toxic chemical fungicides to control plant diseases.


2018 ◽  
Vol 6 (12) ◽  
Author(s):  
Yu-han Gao ◽  
Rong-jun Guo ◽  
Shi-dong Li

ABSTRACT The draft genome of Bacillus velezensis strain B6, a rhizobacterium with good biocontrol performance isolated from soil in China, was sequenced. The assembly comprises 32 scaffolds with a total size of 3.88 Mb. Gene clusters coding either ribosomally encoded bacteriocins or nonribosomally encoded antimicrobial polyketides and lipopeptides in the genome may contribute to plant disease control.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2017 ◽  
Vol 17 (1) ◽  
pp. 31-35
Author(s):  
B Oyuntogtokh ◽  
M Byambasuren

At present, plant diseases caused by soil borne plant pathogens have major constraints on crop production. Which include genera Fusarium spp, Phytophtora spp, Sclerotinia and Altenaria. Due to this reason, chemical fungicides are routinely used to control plant disease, which is also true in Mongolian case. However, use of these chemicals has caused various problems including environmental pollution with consequence of toxicity to human health also resistance of some pathogens to these fungicides are present. Fortunately, an alternative method to reduce the effect of these plant pathogens is the use of antagonist microorganisms. Therefore, some species of the genus Bacillus are recognized as one of the most effective biological control agent.Our research was focused to isolate Bacillus licheniformis, with antifungal potential, from indigenous sources. In the current study, 28 bacterial cultures were isolated from soil and fermented mare’s milk also named as koumiss. Isolated bacterial cultures were identified according to simplified key for the tentative identification of typical strain of Bacillus species. As a result 8 strains were positive and further screened for antifungal activity against Fusarium spp and Alternaria solani. Out of these 8 strains 5 strains are selected based on their high effectiveness against fungal pathogens and for further confirmation Polymerase Chain reaction run for effective bacterial strains using specific primers B.Lich-f and B.Lich-r. 


1943 ◽  
Vol 16 (3) ◽  
pp. 618-620
Author(s):  
Albert E. Dimond ◽  
James G. Horsfall

Abstract The recent article by ZoBell and Grant notes the attack of rubber by bacteria under conditions of high moisture. It is suggested that “the life of rubber products which come in contact with moisture may be prolonged if ways can be found to retard or prevent the activity of rubber oxidizing microorganisms”. In the compounding of rubber commercially, native rubber is mixed with a number of chemicals, each of which serves a specific purpose in the properties of the finished product. Among these are accelerators which lower the temperature and shorten the time of vulcanization and lengthen the life of rubber. Two well-known accelerators are mercaptobenzothiazole and tetramethylthiuram disulfide. These compounds have been tested for their ability to inhibit germination of fungi, and gross observations have been made on their ability to inhibit bacterial growth. Mercaptobenzothiazole is a moderately good fungicide, and tetramethylthiuram disulfide is excellent. The latter compound is now being marketed as a seed protectant and for the prevention of turf diseases. Both of these materials have been tested, under field conditions prevailing in Connecticut, by the authors for their efficacy in controlling plant diseases. Mercaptobenzothiazole, although inferior to tetramethylthiuram disulfide, has given partial plant disease control.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2441
Author(s):  
Liangzhe Chen ◽  
Xiaohui Cui ◽  
Wei Li

Plant diseases can harm crop growth, and the crop production has a deep impact on food. Although the existing works adopt Convolutional Neural Networks (CNNs) to detect plant diseases such as Apple Scab and Squash Powdery mildew, those methods have limitations as they rely on a large amount of manually labeled data. Collecting enough labeled data is not often the case in practice because: plant pathogens are variable and farm environments make collecting data difficulty. Methods based on deep learning suffer from low accuracy and confidence when facing few-shot samples. In this paper, we propose local feature matching conditional neural adaptive processes (LFM-CNAPS) based on meta-learning that aims at detecting plant diseases of unseen categories with only a few annotated examples, and visualize input regions that are ‘important’ for predictions. To train our network, we contribute Miniplantdisease-Dataset that contains 26 plant species and 60 plant diseases. Comprehensive experiments demonstrate that our proposed LFM-CNAPS method outperforms the existing methods.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2000
Author(s):  
Mukesh Dubey

Excessive pesticide application for plant disease control can result in environmental and health-related problems [...]


2010 ◽  
Vol 01 (02) ◽  
pp. 55-68 ◽  
Author(s):  
Shabir H. Wani ◽  
Gulzar S. Sanghera ◽  
Naorem B. Singh

Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2086-2094
Author(s):  
Zhiwen Wang ◽  
Tan Dai ◽  
Qin Peng ◽  
Xiang Gao ◽  
Shan Zhong ◽  
...  

Plant disease is a major threat to crop production, and fungicide application is one of the most effective methods to control plant disease. With emerging issues related to toxic residues and pathogen resistance, new fungicides with novel modes of action are urgently needed. SYP-14288 is a novel fungicide that could efficiently promote respiration and inhibit ATP biosynthesis in target organisms, but its bioactivity against various plant pathogens and exact mode of action are still unknown. In this study, we found that SYP-14288 is highly effective against 31 important plant pathogens belonging to a range of taxonomic groups. In addition, SYP-14288 has demonstrated excellent activity against all life stages of the important fungal plant pathogen Magnaporthe oryzae and is especially effective during the pathogen’s high energy consumption stages. SYP-14288 showed good preventative control efficacy against pepper blight and rice blast in the greenhouse and field, respectively. In an untargeted metabolomics assay designed to determine the exact mode of action of SYP-14288, significant changes occurred in 25 metabolites, with the accumulation of seven fatty acid metabolites and a decrease in 18 starch and sugar metabolites (e.g., from the tricarboxylic acid cycle). This suggests that SYP-14288 is an uncoupling agent similar to 2,4-dinitrophenol, which can allow for accumulation of various fatty acids after destroying oxidative phosphorylation coupling, thereby inhibiting the growth of the phytopathogen. These results indicate that the novel uncoupler SYP-14288 is a promising agrochemical in plant disease management.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 60
Author(s):  
Vincenzo Michele Sellitto ◽  
Severino Zara ◽  
Fabio Fracchetti ◽  
Vittorio Capozzi ◽  
Tiziana Nardi

From a ‘farm to fork’ perspective, there are several phases in the production chain of fruits and vegetables in which undesired microbial contaminations can attack foodstuff. In managing these diseases, harvest is a crucial point for shifting the intervention criteria. While in preharvest, pest management consists of tailored agricultural practices, in postharvest, the contaminations are treated using specific (bio)technological approaches (physical, chemical, biological). Some issues connect the ‘pre’ and ‘post’, aligning some problems and possible solution. The colonisation of undesired microorganisms in preharvest can affect the postharvest quality, influencing crop production, yield and storage. Postharvest practices can ‘amplify’ the contamination, favouring microbial spread and provoking injures of the product, which can sustain microbial growth. In this context, microbial biocontrol is a biological strategy receiving increasing interest as sustainable innovation. Microbial-based biotools can find application both to control plant diseases and to reduce contaminations on the product, and therefore, can be considered biocontrol solutions in preharvest or in postharvest. Numerous microbial antagonists (fungi, yeasts and bacteria) can be used in the field and during storage, as reported by laboratory and industrial-scale studies. This review aims to examine the main microbial-based tools potentially representing sustainable bioprotective biotechnologies, focusing on the biotools that overtake the boundaries between pre- and postharvest applications protecting quality against microbial decay.


Sign in / Sign up

Export Citation Format

Share Document