scholarly journals Free Fatty Acids Promote the Development of Prostate Cancer by Upregulating Peroxisome Proliferator-Activated Receptor Gamma

2020 ◽  
Vol Volume 12 ◽  
pp. 1355-1369 ◽  
Author(s):  
Xiaodan Ha ◽  
Jingzhou Wang ◽  
Keru Chen ◽  
Yuchun Deng ◽  
Xueting Zhang ◽  
...  
Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Weimin He

The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.


2012 ◽  
Vol 10 (1) ◽  
pp. nrs.10001 ◽  
Author(s):  
Muralidharan Anbalagan ◽  
Brandy Huderson ◽  
Leigh Murphy ◽  
Brian G. Rowan

Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARΓ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy's Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Huibin Tian ◽  
Jun Luo ◽  
Hengbo Shi ◽  
Xiaoying Chen ◽  
Jiao Wu ◽  
...  

Abstract A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA). Three copies of the peroxisome proliferator-activated receptor response element (PPRE) contained in a luciferase reporter vector were transfected into GMEC followed by incubation with WY at 0, 10, 20, 30, 50, or 100 µM. A dose of 50 µM WY was most effective at activating PPRE without influencing PPARA mRNA abundance. Transfecting siRNA targeting PPARA decreased its mRNA abundance to 20% and protein level to 50% of basal levels. Use of WY upregulated FASN, SCD1, ACSL1, DGAT1, FABP4, and CD36 (1.1-, 1.5-, 2-, 1.4-, 1.5-, and 5-fold, respectively), but downregulated DGAT2 and PGC1A (−20% and −40%, respectively) abundance. In contrast, triacylglycerol concentration decreased and the content and desaturation index of C16:1 and C18:1 increased. Thus, activation of PPARA via WY appeared to channel fatty acids away from esterification. Knockdown of PPARA via siRNA downregulated ACACA, SCD1, AGPAT6, CD36, HSL, and SREBF1 (−43%, −67%, −16%, −56%, −26%, and −29%, respectively), but upregulated ACSL1, DGAT2, FABP3, and PGC1A (2-, 1.4-, 1.3-, and 2.5-fold, respectively) mRNA abundance. A decrease in the content and desaturation index of C16:1 and C18:1 coupled with an increase in triacylglycerol content accompanied those effects at the mRNA level. Overall, data suggest that PPARA could promote the synthesis of MUFA in GMEC through its effects on mRNA abundance of genes related to fatty acid synthesis, oxidation, transport, and triacylglycerol synthesis.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1259 ◽  
Author(s):  
Garima Maheshwari ◽  
Robert Ringseis ◽  
Gaiping Wen ◽  
Denise K. Gessner ◽  
Johanna Rost ◽  
...  

The study aimed to test the hypothesis that monomethyl branched-chain fatty acids (BCFAs) and a lipid extract of Conidiobolus heterosporus (CHLE), rich in monomethyl BCFAs, are able to activate the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Rat Fao cells were incubated with the monomethyl BCFAs 12-methyltridecanoic acid (MTriA), 12-methyltetradecanoic acid (MTA), isopalmitic acid (IPA) and 14-methylhexadecanoic acid (MHD), and the direct activation of PPARalpha was evaluated by reporter gene assay using a PPARalpha responsive reporter gene. Furthermore, Fao cells were incubated with different concentrations of the CHLE and PPARalpha activation was also evaluated by using the reporter gene assay, and by determining the mRNA concentrations of selected PPARalpha target genes by real-time RT-PCR. The reporter gene assay revealed that IPA and the CHLE, but not MTriA, MHD and MTA, activate the PPARalpha responsive reporter gene. CHLE dose-dependently increased mRNA concentrations of the PPARalpha target genes acyl-CoA oxidase (ACOX1), cytochrome P450 4A1 (CYP4A1), carnitine palmitoyltransferase 1A (CPT1A) and solute carrier family 22 (organic cation/carnitine transporter), member 5 (SLC22A5). In conclusion, the monomethyl BCFA IPA is a potent PPARalpha activator. CHLE activates PPARalpha-dependent gene expression in Fao cells, an effect that is possibly mediated by IPA.


2008 ◽  
Vol 86 (9) ◽  
pp. 643-649 ◽  
Author(s):  
Thomas P. Johnston ◽  
David J. Waxman

Poloxamer 407 (P-407) is a copolymer surfactant that induces a dose-controlled dyslipidemia in both mice and rats. Human macrophages cultured with P-407 exhibit a concentration-dependent reduction in cholesterol efflux to apolipoprotein A1 (apoA1) linked to downregulation of the ATP-binding cassette transporter A1 (ABCA1). Activators of peroxisome proliferator-activated receptor gamma (PPARγ), as well as PPARα, increase expression of liver X receptor alpha (LXRα) in macrophages and promote the expression of ABCA1, which, in turn, mediates cholesterol efflux to apoA1. The present study investigated whether P-407 interferes with this signaling pathway. A transactivation assay was used to evaluate whether P-407 can either activate or inhibit the transcriptional activity of PPARγ. Because thiazolidinedione drugs (PPARγ agonists) improve glycemic control in type 2 diabetes by reducing blood glucose concentrations, P-407 was also evaluated for its potential to alter plasma insulin and blood glucose concentrations in wild-type (C57BL/6) and PPARγ-deficient mice. Additionally, because thiazolidinediones attenuate release of free fatty acids (FFAs) from adipocytes and, consequently, decrease circulating plasma levels of FFAs, plasma concentrations of circulating FFAs were also determined in P-407-treated mice. P-407 was unable to modulate PPARγ activity in cell-based transactivation assays. Furthermore, P-407 did not perturb plasma insulin and blood glucose concentrations after administration to mice. However, by an as yet unidentified mechanism, P-407 caused a significant increase in the serum concentration of FFAs in mice beginning 3 h after administration and lasting more than 24 h postdosing. It is concluded that P-407 does not interfere with the functional activity of PPARγ after administration to mice.


Sign in / Sign up

Export Citation Format

Share Document