scholarly journals Network Pharmacology-Based Approach to Investigate the Molecular Targets of Sinomenine for Treating Breast Cancer

2021 ◽  
Vol Volume 13 ◽  
pp. 1189-1204
Author(s):  
Xiao-Mei Li ◽  
Mao-Ting Li ◽  
Ni Jiang ◽  
Ya-Chen Si ◽  
Meng-Mei Zhu ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1846
Author(s):  
Hani A. Alhadrami ◽  
Heba Alkhatabi ◽  
Fahad H. Abduljabbar ◽  
Usama Ramadan Abdelmohsen ◽  
Ahmed M. Sayed

Cladiella-derived natural products have shown promising anticancer properties against many human cancer cell lines. In the present investigation, we found that an ethyl acetate extract of Cladiella pachyclados (CE) collected from the Red Sea could inhibit the human breast cancer (BC) cells (MCF and MDA-MB-231) in vitro (IC50 24.32 ± 1.1 and 9.55 ± 0.19 µg/mL, respectively). The subsequent incorporation of the Cladiella extract into the green synthesis of silver nanoparticles (AgNPs) resulted in significantly more activity against both cancer cell lines (IC50 5.62 ± 0.89 and 1.72 ± 0.36, respectively); the efficacy was comparable to that of doxorubicin with much-enhanced selectivity. To explore the mode of action of this extract, various in silico and network-pharmacology-based analyses were performed in the light of the LC-HRESIMS-identified compounds in the CE extract. Firstly, using two independent machine-learning-based prediction software platforms, most of the identified compounds in CE were predicted to inhibit both MCF7 and MDA-MB-231. Moreover, they were predicted to have low toxicity towards normal cell lines. Secondly, approximately 242 BC-related molecular targets were collected from various databases and used to construct a protein–protein interaction (PPI) network, which revealed the most important molecular targets and signaling pathways in the pathogenesis of BC. All the identified compounds in the extract were then subjected to inverse docking against all proteins hosted in the Protein Data bank (PDB) to discover the BC-related proteins that these compounds can target. Approximately, 10.74% of the collected BC-related proteins were potential targets for 70% of the compounds identified in CE. Further validation of the docking results using molecular dynamic simulations (MDS) and binding free energy calculations revealed that only 2.47% of the collected BC-related proteins could be targeted by 30% of the CE-derived compounds. According to docking and MDS experiments, protein-pathway and compound-protein interaction networks were constructed to determine the signaling pathways that the CE compounds could influence. This paper highlights the potential of marine natural products as effective anticancer agents and reports the discovery of novel anti-breast cancer AgNPs.


2020 ◽  
Vol 14 ◽  
Author(s):  
Abhishek Kumar ◽  
Neeraj Masand ◽  
Vaishali M. Patil

Abstract: Breast cancer is the most common and highly heterogeneous neoplastic disease comprised of several subtypes with distinct molecular etiology and clinical behaviours. The mortality observed over the past few decades and the failure in eradicating the disease is due to the lack of specific etiology, molecular mechanisms involved in initiation and progression of breast cancer. Understanding of the molecular classes of breast cancer may also lead to new biological insights and eventually to better therapies. The promising therapeutic targets and novel anti-cancer approaches emerging from these molecular targets that could be applied clinically in the near future are being highlighted. In addition, this review discusses some of the details of current molecular classification and available chemotherapeutics


RSC Advances ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11610-11626
Author(s):  
Reham S. Ibrahim ◽  
Alaa A. El-Banna

Multi-level mechanism of action of propolis constituents in cancer treatment using an integrated approach of network pharmacology-based analysis, molecular docking and in vitro cytotoxicity testing.


Molecules ◽  
2013 ◽  
Vol 18 (12) ◽  
pp. 15019-15034 ◽  
Author(s):  
Robert Brown ◽  
Vanessa Gaerig ◽  
Taesha Simmons ◽  
Tracy Brooks

Author(s):  
Peiliang Wu ◽  
Xiaona Xie ◽  
Mayun Chen ◽  
Junwei Sun ◽  
Luqiong Cai ◽  
...  

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.


Sign in / Sign up

Export Citation Format

Share Document