scholarly journals In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa

2016 ◽  
pp. 1749 ◽  
Author(s):  
Mohamed Mohamed El-Azizi ◽  
Suzanne Nour El Din ◽  
Tarek El-Tayeb ◽  
Khaled Abou Aisha
2020 ◽  
Vol 8 (2) ◽  
pp. 739-745 ◽  
Author(s):  
Weinan Jiang ◽  
Ximian Xiao ◽  
Yueming Wu ◽  
Weiwei Zhang ◽  
Zihao Cong ◽  
...  

Host defense peptide mimicking peptide polymer displayed potent in vitro and in vivo antimicrobial activity against clinically isolated multidrug resistant Pseudomonas aeruginosa.


2012 ◽  
Vol 57 (3) ◽  
pp. 1238-1245 ◽  
Author(s):  
Tianhong Dai ◽  
Asheesh Gupta ◽  
Ying-Ying Huang ◽  
Rui Yin ◽  
Clinton K. Murray ◽  
...  

ABSTRACTBlue light has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. However, the use of blue light for wound infections has not been established yet. In this study, we demonstrated the efficacy of blue light at 415 nm for the treatment of acute, potentially lethalPseudomonas aeruginosaburn infections in mice. Ourin vitrostudies demonstrated that the inactivation rate ofP. aeruginosacells by blue light was approximately 35-fold higher than that of keratinocytes (P= 0.0014). Transmission electron microscopy revealed blue light-mediated intracellular damage toP. aeruginosacells. Fluorescence spectroscopy suggested that coproporphyrin III and/or uroporphyrin III are possibly the intracellular photosensitive chromophores associated with the blue light inactivation ofP. aeruginosa.In vivostudies using anin vivobioluminescence imaging technique and an area-under-the-bioluminescence-time-curve (AUBC) analysis showed that a single exposure of blue light at 55.8 J/cm2, applied 30 min after bacterial inoculation to the infected mouse burns, reduced the AUBC by approximately 100-fold in comparison with untreated and infected mouse burns (P< 0.0001). Histological analyses and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays indicated no significant damage in the mouse skin exposed to blue light at the effective antimicrobial dose. Survival analyses revealed that blue light increased the survival rate of the infected mice from 18.2% to 100% (P< 0.0001). In conclusion, blue light therapy might offer an effective and safe alternative to conventional antimicrobial therapy forP. aeruginosaburn infections.


Laser Physics ◽  
2019 ◽  
Vol 29 (3) ◽  
pp. 035601
Author(s):  
Benjian Shen ◽  
Liucun Gao ◽  
Jin Xing ◽  
Jing Fang ◽  
Jie Liang ◽  
...  

Chemotherapy ◽  
2016 ◽  
Vol 62 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Yuka Yamagishi ◽  
Mao Hagihara ◽  
Hideo Kato ◽  
Jun Hirai ◽  
Naoya Nishiyama ◽  
...  

Background: Reports of Pseudomonas aeruginosa with high antimicrobial resistance have steadily emerged, threatening the utility of a mainstay in antipseudomonal therapy. This study evaluated the antimicrobial activities of various combination therapies against P. aeruginosa with high antimicrobial resistance, including multidrug-resistant P. aeruginosa (MDRP) using an in vitro and in vivo study. Methods: We evaluated 24 combination therapies, including colistin, aztreonam, meropenem, ceftazidime, ciprofloxacin, amikacin, rifampicin, arbekacin and piperacillin against 15 MDRP isolates detected at Aichi Medical University Hospital with the break-point checkerboard method. Based on the results of the in vitro study, we evaluated antimicrobial activity against highly antimicrobial-resistant P. aeruginosa with an in vivo murine thigh infection model. Results: The combination regimens including colistin and aztreonam showed higher antimicrobial activity against the 15 MDRP isolates. In the in vivo study, the high-dose colistin monotherapy (16 mg/kg every 12 h) achieved greater log10 CFU changes than the normal-dose colistin regimen (8 mg/kg every 12 h) against 5 P. aeruginosa isolates, including 2 MDRP isolates (p < 0.05). Aztreonam monotherapy (400 mg every 8 h) yielded bacterial densities similar to untreated control mice for the MDRP isolate evaluated. The combination therapy with a higher dose of colistin had superior antimicrobial activity against 5 P. aeruginosa with colistin (MIC 0.5 μg/ml) and aztreonam (MIC ≥128 μg/ml) than colistin monotherapy. Conclusion: The data suggest that the combination treatment of colistin and aztreonam could be the most useful for treating highly resistant P. aeruginosa with a higher susceptibility to colistin, including MDRP infections.


2019 ◽  
Author(s):  
L. Blasco ◽  
A. Ambroa ◽  
R. Trastoy ◽  
E. Perez-Nadales ◽  
F. Fernández-Cuenca ◽  
...  

ABSTRACTThe multidrug resistance (MDR) among pathogenic bacteria is jeopardizing the worth of antimicrobials, which had previously changed medical sciences. In this study, we used bioinformatic tools to identify the endolysins ElyA1 and ElyA2 (GH108-PG3 family) present in the genome of bacteriophages Ab1051Φ and Ab1052Φ, respectively. The muralytic activity of these endolysins over MDR clinical isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested using the turbidity reduction assay. The minimal inhibitory concentrations (MICs) of endolysin, colistin and their combination were determined using the microdilution checkerboard method. The antimicrobial activity of the combinations was confirmed by time kill curves and in vivo assays in larvae of Galleria mellonella. Our results showed that ElyA1 displayed activity against all 25 strains of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. No activity was detected when assays were done with endolysin ElyA2. The combined antimicrobial activity of colistin and endolysin ElyA1 yielded a reduction in the colistin MIC for all strains studied, except K. pneumoniae. These results were confirmed in vivo in G. mellonella survival assays. In conclusion, the combination of colistin with new endolysins such as ElyA1 could increase the bactericidal activity and reduce the MIC of the antibiotic, thus also reducing the associated toxicity.IMPORTANCEThe development of multiresistance by pathogen bacteria increases the necessity of the development of new antimicrobial strategies. In this work, we combined the effect of the colistin with a new endolysin, ElyA1, from a bacteriophage present in the clinical strain of Acinetobacter baumannii Ab105. ElyA1 is a lysozyme-like family (GH108-GP3), whose antimicrobial activity was described for first time in this work. Also, another endolysin, ElyA2, with the same origin and family, was characterized but in this case no activity was detected. ElyA1 presented lytic activity over a broad spectrum of strains from A. baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. When colistin was combined with ElyA1 an increase of the antimicrobial activity was observed with a reduced concentration of colistin, and this observation was also confirmed in vivo in Galleria mellonella larvae. The combination of colistin with new endolysins as ElyA1 could increase the bactericidal activity and lowering the MIC of the antibiotic, thus also reducing the associated toxicity.


2018 ◽  
Vol 101 (6) ◽  
pp. 1905-1912
Author(s):  
Ayat Jadou ◽  
Ayyad W Al-Shahwany

Abstract Background: Silver nanoparticles (AgNPs) are employed in various applications in the areas of catalysis, optoelectronics, detection and diagnostics, antimicrobials, and therapeutics. Objective: The aim of this work was to study the antimicrobial activity of aqueous and methanolic leaf extracts of Thymus vulgaris and Urtica dioica and biologically prepared silver nanoparticles, as single or in combination treatments, against Escherichia coli and methicillin-resistant Staphylococcus aureus isolates. Methods: The minimum inhibitory concentration (MIC) was quantified by using a microdilution method in sterile 96-well microtiter plates. The assessment of the toxicity of AgNP solutions was evaluated on human blood lymphocyte cells. Results: The results of this study revealed that all AgNP solutions have the lowest MIC values against the bacterial isolates in relation with the methanolic and aqueous extract solutions. However, the results showed that the increasing AgNP concentration was a critical factor influencing the interaction between AgNPs and the human lymphocytes. Conclusions: The cytotoxicity of nanoparticles increased significantly (P &lt; 0.05) at high concentrations. In addition, the biosynthesized AgNPs have an increased antimicrobial activity against all tested bacterial isolates. Highlights: AgNPs have been recognized as an effective antimicrobial agent that exhibits low toxicity in humans and has diverse in vitro and in vivo applications.


1986 ◽  
Vol 32 (9) ◽  
pp. 751-755 ◽  
Author(s):  
M. C. Barc ◽  
P. Bourlioux ◽  
H. Boureau ◽  
F. Nerbone ◽  
E. Wasconcellos da Costa

Bacterial colonizaion of the digestive tract and the skin was studied over a 3-week period in a group of 10 germfree HRS mice using Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Sequential utilization of two strains allowed us to carry out six assays and to show the presence of interference phenomena during colonization of the skin. When P. aeruginosa was given after challenge with S. aureus or S. epidermidis, it did not colonize the skin. If the first challenge was done with P. aeruginosa, this bacteria was eliminated within 10 days by S. aureus and S. epidermidis on the skin, but it succeeded in colonizing the digestive tract. When the first challenge was done with S. aureus, colonization of the skin and the digestive tract with S. epidermidis was prevented, whereas these two species were found in association when S. aureus was given in second place. None of the in vitro assays (mixed culture, bacteriocin production, adherence inhibition, antimicrobial activity) could explain the in vivo observations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maha A. Khalil ◽  
Gamal M. El Maghraby ◽  
Fatma I. Sonbol ◽  
Nanis G. Allam ◽  
Perihan S. Ateya ◽  
...  

Burn wound infections with multidrug-resistant (MDR) bacteria are shown in many countries as severe widespread health threats. Consequently, attention has been devoted to new nanoparticle-based materials in the field of antimicrobial chemotherapy for burn wound infections. This study aimed to evaluate both in vitro and in vivo efficacies of nanoparticle–antibiotic combinations as new classes of materials subjected against MDR Pseudomonas aeruginosa. Out of 40 Gram-negative isolates, 23 P. aeruginosa were recovered from patients with burn wound infections attending different hospitals in Tanta, Egypt. The susceptibility test revealed that 95.7% of P. aeruginosa isolates were MDR with a high incidence of resistance against carbenicillin. Antibacterial activities of silver nanoparticles (Ag-NPs) against the isolates examined showed various inhibition zone diameters ranging from 11 to 17 mm. Strong synergistic efficacy of neomycin was reported in combination with Ag-NPs against MDR P. aeruginosa P8 and P14 isolates. The in vivo effectiveness of various pharmaceutical formulations prepared from a combination of neomycin antibiotic with Ag-NPs in the treatment of induced bacterially infected mice burns showed that maximum healing activity along with faster wound contraction reported with the combination of neomycin-Ag-NPs in the spray formulation. Generally, data indicated that incorporating Ag-NPs in combination with certain antibiotics may be a new, promising application for wound treatments, especially burns infected with MDR P. aeruginosa.


Peptides ◽  
2017 ◽  
Vol 94 ◽  
pp. 49-55 ◽  
Author(s):  
Mayte Cossio-Ayala ◽  
Mariana Domínguez-López ◽  
Erika Mendez-Enriquez ◽  
María del Carmen Portillo-Téllez ◽  
Enrique García-Hernández

2012 ◽  
Vol 12 (7) ◽  
pp. 5205-5209 ◽  
Author(s):  
Dong-Wook Han ◽  
Yeon I Woo ◽  
Mi Hee Lee ◽  
Jong Ho Lee ◽  
Jaebeom Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document