scholarly journals miR-340 Promotes Retinoblastoma Cell Proliferation, Migration and Invasion Through Targeting WIF1

2021 ◽  
Vol Volume 14 ◽  
pp. 3635-3648
Author(s):  
Kun Li ◽  
Fengmei Han ◽  
Yanping Wu ◽  
Xue Wang
2018 ◽  
Vol 64 (6) ◽  
pp. 42 ◽  
Author(s):  
Xiaolin Miao ◽  
Zhen Wang ◽  
Bingyu Chen ◽  
Yiqi Chen ◽  
Xi Wang ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Zhaoxia Xia ◽  
Xiaoxi Yang ◽  
Shuduan Wu ◽  
Zhizhen Feng ◽  
Lei Qu ◽  
...  

Abstract Our study aimed to investigate the role of long non-coding RNAs (lncRNA) TP73-AS1 in retinoblastoma (Rb). In the present study, we found that TP73-AS1 was up-regulated, while miR-139–3p was down-regulated in Rb. TP73-AS1 and miR-139-3p were inversely correlated in Rb tissues. In cells of Rb cell lines, overexpression of miR-139-3p failed to affect TP73-AS1, while TP73-AS1 overexpression caused the down-regulated miR-139-3p. TP73-AS1 overexpression caused promoted proliferation of Rb cells but showed no significant effects on cell migration and invasion. miR-139-3p overexpression played an opposite role and attenuated the effects of TP73-AS1 overexpression. Therefore, lncRNA TP73-AS1 may down-regulate miR-139-3p to promote Rb cell proliferation.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769167 ◽  
Author(s):  
Yiting Zhang ◽  
Xinyue Zhu ◽  
Xiaomin Zhu ◽  
Yan Wu ◽  
Yajun Liu ◽  
...  

Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3′-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Fengqin Hao ◽  
Yanan Mou ◽  
Laixia Zhang ◽  
Shuna Wang ◽  
Yang Yang

The actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been found to serve as an oncogenic long noncoding RNA (lncRNA) in most types of human cancer. The role of AFAP1-AS1 in retinoblastoma remains unknown. The purpose of the present study is to explore the clinical significance and biological function of AFAP1-AS1 in retinoblastoma. Levels of AFAP1-AS1 expression were measured in retinoblastoma tissues and cell lines. Loss-of-function study was performed to observe the effects of AFAP1-AS1 on retinoblastoma cell proliferation, cell cycle, migration, and invasion. In our results, AFAP1-AS1 expression was elevated in retinoblastoma tissues and cell lines, and associated with tumor size, choroidal invasion, and optic nerve invasion. Moreover, high expression of AFAP1-AS1 was an independent unfavorable prognostic factor in retinoblastoma patients. The experiment in vitro suggested down-regulation of AFAP1-AS1 inhibited retinoblastoma cell proliferation, migration and invasion, and blocked cell cycle. In conclusion, AFAP1-AS1 functions as an oncogenic lncRNA in retinoblastoma.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Lian-Jiao Quan ◽  
Wen-Jun Wang

AbstractLong non-coding RNA (lncRNA) FEZF1 antisense RNA 1 (FEZF1-AS1) has been shown to be up-regulated in tumor tissues and cells, and exerts oncogenic effects on various types of malignancies. However, the expression and function of FEZF1-AS1 was still fully unclear in retinoblastoma. The purpose of our study was to investigate the expression and clinical value of FEZF1-AS1 in retinoblastoma patients, and explore the effect of FEZF1-AS1 on retinoblastoma cell proliferation, migration and invasion. In our results, levels of FEZF1-AS1 expression were elevated in retinoblastoma tissue specimens and cell lines compared with adjacent normal retina tissue specimens and human retinal pigment epithelial cell line, respectively. The correlation analysis indicated that high FEZF1-AS1 expression was significantly correlated with present choroidal invasion and optic nerve invasion. Survival analysis suggested that retinoblastoma patients in high FEZF1-AS1 expression group had obviously short disease-free survival (DFS) compared with retinoblastoma patients in low FEZF1-AS1 expression group, and high FEZF1-AS1 expression was an independent unfavorable prognostic factor for DFS in retinoblastoma patients. Loss-of-function study indicated silencing FEZF1-AS1 expression inhibited retinoblastoma cell proliferation, invasion and migration. In conclusion, FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document