scholarly journals THE INFLUENCING FACTORS OF SO42- AND NO3- IN PM10 IN JINHUA, CHINA

2021 ◽  
Vol 9 (4) ◽  
pp. 935-945
Author(s):  
Yeshun Peng ◽  
◽  
Tingting Yan ◽  
Jianming Feng ◽  
Wamono Emma ◽  
...  

Sulfate (SO42-) and nitrate (NO3-) are the main secondary inorganic components in atmospheric particulates. It is of great significance to understand the formation and evolution of air pollution in the process of air pollution. In this study, samples of PM10 were collected in Jinhua City in eastern China from December 2019 to January 2020 and from June 2020 to August 2020, and also analyzed the influence of different meteorological conditions and gaseous pollutants on the formation of SO42- and NO3- in PM10. The results show that high relative humidity has a significant effect on the increase of sulfur oxidation rate (SOR) in winter, indicating that the winter liquid phase reaction is more conducive to the formation of SO42-. SOR and nitrogen oxidation rate (NOR) decrease with increasing temperature in winter, and increase with increasing temperature in summer. The light intensity has an important promoting effect on both SOR and NOR, indicating that the photochemical reaction is beneficial to the formation of SO42- and NO3-. Both the gaseous precursors SO2 and NO2 have significant promoting effects on the formation of SO42- and NO3- in winter, and the promoting effect of O3 on NOR is higher than that on SOR, indicating that atmospheric oxidation capacity has a greater effect on the formation of NO3-, and the effect of CO on SOR is higher than that on NOR, and there is a negative correlation with SOR.

2020 ◽  
Vol 20 (9) ◽  
pp. 5559-5572
Author(s):  
Shuqi Yan ◽  
Bin Zhu ◽  
Yong Huang ◽  
Jun Zhu ◽  
Hanqing Kang ◽  
...  

Abstract. The remarkable development of China has resulted in rapid urbanization (urban heat island and dry island) and severe air pollution (aerosol pollution). Previous studies demonstrate that these two factors have either suppressing or promoting effects on fog, but what are the extents of their individual and combined effects? In this study, a dense radiation fog event in eastern China in January 2017 was reproduced by the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), and the individual and combined effects of urbanization and aerosols on fog (indicated by liquid water content – LWC) are quantitatively revealed. Results show that urbanization inhibits low-level fog, delays its formation and advances its dissipation due to higher temperatures and lower saturations. In contrast, upper-level fog could be enhanced because of the updraught-induced vapour convergence. Aerosols promote fog by increasing LWC, increasing droplet concentration and decreasing droplet effective radius. Further experiments show that the current pollution level in China could still be below the critical aerosol concentration that suppresses fog. Urbanization influences fog to a larger extent than aerosols do. When urbanization and aerosol pollution are combined, the much weaker aerosol-promoting effect is counteracted by the stronger urbanization-suppressing effect on fog. Budget analysis of LWC reveals that urban development (urbanization and aerosols) alters the LWC profile and fog structure mainly by modulating condensation–evaporation process. Our results infer that urban fog will be further reduced if urbanization keeps developing and air quality keeps deteriorating in the future.


Author(s):  
Zhujun Dai ◽  
Duanyang Liu ◽  
Kun Yu ◽  
Lu Cao ◽  
Youshan Jiang

Steady meteorological conditions are important external factors affecting air pollution. In order to analyze how adverse meteorological variables affect air pollution, surface synoptic situation patterns and meteorological conditions during heavy pollution episodes are discussed. The results showed that there were 78 RPHPDs (regional PM2.5 pollution days) in Jiangsu, with a decreasing trend year by year. Winter had the most stable meteorological conditions, thus most RPHPDs appeared in winter, followed by autumn and summer, with the least days in spring. RPHPDs were classified into three patterns, respectively, as equalized pressure (EQP), advancing edge of a cold front (ACF) and inverted trough of low pressure (INT) according to the SLP (sea level pressure). RPHPDs under EQP were the most (51%), followed by ACF (37%); INT was the minimum (12%). Using statistical methods and meteorological condition data on RPHPDs from 2013 to 2017 to deduce the thresholds and 2018 as an independent dataset to validate the proposed thresholds, the threshold values of meteorological elements are summarized as follows. The probability of RPHPDs without rain was above 92% with the daily and hourly precipitation of all RPHPDs below 2.1 mm and 0.8 mm. Wind speed, RHs, inversion intensity(ITI), height difference in the temperature inversion(ITK), the lower height of temperature inversion (LHTI) and mixed-layer height (MLH) in terms of 25%–75% high probability range were respectively within 0.5–3.6 m s−1, 55%–92%, 0.7–4.0 °C 100 m −1, 42–576 m, 3–570 m, 200–1200 m. Two conditions should be considered: whether the pattern was EQP, ACF or INT and whether the eight meteorological elements are within the thresholds. If both criteria are met, PM2.5 particles tend to accumulate and air pollution diffusion conditions are poor. Unfavorable meteorological conditions are the necessary, but not sufficient condition for RPHPDs.


2018 ◽  
Vol 18 (22) ◽  
pp. 16345-16361 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are the main sources of air pollutants around the globe but are particularly intensive and important for air quality in Asia in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution and meteorological feedback of these aerosols in a unique pollution episode that occurred in eastern Asia based on various measurement data and modeling methods. In this episode, the Yangtze River Delta (YRD) in eastern China experienced persistent air pollution, dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015. The Eulerian and Lagrangian models were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multisource and multiday air pollution episode. The regional polluted continental aerosols mainly accumulated near the surface, mixed with dust aerosol downwash from the upper planetary boundary layer (PBL) and middle–lower troposphere (MLT), and further transported by large-scale cold fronts and warm conveyor belts. BB smoke from Southeast Asia was transported by westerlies around the altitude of 3 km from southern China, was further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the Pacific. These pollutants could all be transported to the YRD region and cause a structure of multilayer pollution there. These pollutants could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in eastern China and the downwind Pacific Ocean and raises the need for quantitative understanding of environmental and climate impacts of these pollution sources.


Author(s):  
Youfan Chen ◽  
Lin Zhang ◽  
Daven K. Henze ◽  
Yuanhong Zhao ◽  
Xiao Lu ◽  
...  

Abstract Emissions of reactive nitrogen as ammonia (NH3) and nitrogen oxides (NOx), together with sulfur dioxide (SO2), contribute to formation of secondary PM2.5 in the atmosphere. Satellite observations of atmospheric NH3, NO2, and SO2 levels since the 2000s provide valuable information to constrain the spatial and temporal variability of their emissions. Here we present a bottom-up Chinese NH3 emission inventory combined with top-down estimates of Chinese NOx and SO2 emissions using OMI satellite observations, aiming to quantify the interannual variations of reactive nitrogen emissions in China and their contributions to PM2.5 air pollution over 2005–2015. We find small interannual changes in the total Chinese anthropogenic NH3 emissions during 2005–2016 (12.0–13.3 Tg with over 85% from agricultural sources), but large interannual change in top-down Chinese NOx and SO2 emissions. Chinese NOx emissions peaked around 2011 and declined by 22% during 2011–2015, and Chinese SO2 emissions declined by 55% in 2015 relative to that in 2007. Using the GEOS-Chem chemical transport model simulations, we find that rising atmospheric NH3 levels in eastern China since 2011 as observed by IASI and AIRS satellites are mainly driven by rapid reductions in SO2 emissions. The 2011–2015 Chinese NOx emission reductions have decreased regional annual mean PM2.5 by 2.3–3.8 μg m-3. Interannual PM2.5 changes due to NH3 emission changes are relatively small, but further control of agricultural NH3 emissions can be effective for PM2.5 pollution mitigation in eastern China.


Sign in / Sign up

Export Citation Format

Share Document