Impact Assessment of Water Harvesting Structures in Micro-Watersheds of Nira River Basin, Maharashtra, India

2020 ◽  
Vol 3 (2) ◽  
pp. 72-89
Author(s):  
Trupti Raskar ◽  
Himanshu Gaikwad ◽  
Omkar Kadekar ◽  
Bhavana Umrikar

Artificial recharge is highly recommended in declining groundwater level trends as well as partially replenished aquifers. Moreover, the quantification of the recharge to aquifers due to such measures is important in water resource budgeting, development and planning. With this objective nine locations representing varied geomorphology were selected and the groundwater levels from the dug well in the proximity of water harvesting structures were monitored. The plot of monthly groundwater levels versus rainfall depicts that in the month of July high rainfall occurred but the groundwater levels raised in August due to delayed recharge process. The water level data also indicate the availability of water column of about 5m to 6m in most of the wells till the end of February, 2020. Water Harvesting structures overlaid on the Recharge Potential Zone map represent excellent (13.1%), very good (12.3%), good (23.3%), moderate (25.2) and poor (26.1) zones. The computation of artificial recharge from these structures depict that the structures having high storage capacity with a greater number of fillings have higher recharge. Also, the geophysical resistivity surveys were conducted to understand the degree of saturation at each location up to 50m, 100m and 150m distances from the structure. After integrating all datasets, it has been found that the structure at Shivajinagar has highest recharge followed by Pisalwadi, Kanheri, Zagalwadi 2, Kavathe, Ansur, Bholi, Limbachidwadi, Zagalwadi 1 and Kesurdi. Thus, the study concludes that the impact of water harvesting structures varies according to topography, land slope, geomorphology, size of catchment and lithology.

2019 ◽  
Vol 34 (02) ◽  
Author(s):  
R. K. Jaiswal ◽  
T. Thomas ◽  
Jyoti P Patil ◽  
Meeta Gupta ◽  
V. C. Goyal

It is a well-known fact that it is not all possible to avoid droughts, but droughts can be managed to minimise the hardships of the local population. For this purpose, understanding of the supply-demand scenario is of utmost importance to understand the overall hydrology and planning needs of any watershed. It is in this direction, the comprehensive water balance analysis has been performed for the Sajnam watershed in Lalitpur district of Bundelkhand which is susceptible to regular and continuous droughts. The detailed water balance has been carried out after identification of important components and their quantification using the advance tools of Remote Sensing and GIS alongwith standard estimation techniques of individual components. It was observed that the runoff at the outlet of Sajnam basin is influenced by the water storage in the irrigation project located on the main river. The higher surface runoff of 668.53 MCM, 406.17 MCM, 343.46 MCM and 214.00 MCM is generated only during 2013-14, 2008-09, 2012-13 and 2010-11 respectively. During the remaining years, the runoff varied between 89.35 MCM and 209.81 MCM. Efforts can be initiated towards exploring the possibility of more water harvesting structures onthe lower order tributaries as well as artificial recharge measures depending on the hydro-geology of the watershed..


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Alphayo I. Lutta ◽  
Oliver Vivian Wasonga ◽  
Moses M. Nyangito ◽  
Falendra Kumar Sudan ◽  
Lance W. Robinson

Abstract Background The arid and semi-arid lands experience inherently unpredictable rainfall and frequent droughts, which are exacerbated by climate change. This consequently leads to deterioration of land resources, and eventually forage and water shortages that negatively impact livestock productivity. In Kenya, development and government agencies have been supporting on-farm adaptation strategies such as water harvesting conservation structures to cope with climate hazards that affect agricultural production and food security in agro-pastoral and pastoral systems. The various water harvesting structures that have been promoted include Zai pits for growing crops and trees, water pans and shallow wells for livestock and domestic use, as well as for irrigation. However, the impact of such interventions with regard to improvement of range productivity and therefore welfare of agro-pastoral and pastoral communities has not been felt owing to low adoption rate by households. Results This study determined social, economic and institutional factors influencing the adoption of water harvesting technologies by households in pastoral areas of Tana river County of Kenya. The data was collected through household survey, focus group discussions and key informant interviews. The results show that access to extension services and training, level of monthly income, main source of livelihood, land tenure, membership in social groups and availability of active farm labor significantly influenced the adoption of water harvesting structures. Conclusion Pastoralists therefore need to be mobilized and trained on how to construct and use water harvesting structures and sensitized on the potential socioeconomic benefits of adopting them.


2020 ◽  
Author(s):  
Alphayo Lutta ◽  
Oliver Vivian Wasonga ◽  
Moses Nyangito ◽  
Falendra Kumar Sudan ◽  
Lance Robinson

Abstract Background: The arid and semi-arid lands experience inherently unpredictable rainfall and frequent droughts, which are exacerbated by climate change. This consequently leads to deterioration of land resources, and eventually forage and water shortages that negatively impact livestock productivity. In Kenya, development and governments agencies have been supporting on farm adaptation strategies such as water harvesting conservation structures to cope with climate hazards that affect agricultural production and food security in agro-pastoral and pastoral systems. The various water harvesting structures that have been promoted include Zai pits for growing crops and trees, water pans and shallow wells for livestock and domestic use, as well as irrigation. However, the impact of such interventions with regard to improvement of range productivity and therefore welfare of agro-pastoral and pastoral communities has not been felt owing to low adoption rate by households. Results: This study determined social, economic and institutional factors influencing the adoption of water harvesting technologies by households in pastoral areas of Tana river County of Kenya. The data was collected through household survey, focus group discussions and key informant interviews. The results show that access to extension services and training, level of monthly income, main source of livelihood, land tenure, membership in social groups and availability of active farm labor significantly influenced the adoption of water harvesting structures. Conclusion: Pastoralists therefore need to be mobilized and trained on how to construct and use water harvesting structures and sensitized on the potential socioeconomic benefits of adopting them. Key words: Drylands, Water harvesting, Adaptive strategies, Pastoralism


2020 ◽  
Author(s):  
Alphayo Lutta ◽  
Oliver Vivian Wasonga ◽  
Moses Nyangito ◽  
Falendra Kumar Sudan ◽  
Lance Robinson

Abstract Background: The arid and semi-arid lands experience inherently unpredictable rainfall and frequent droughts, which are exacerbated by climate change. This consequently leads to deterioration of land resources, and eventually forage and water shortages that negatively impact livestock productivity. In Kenya, development and government agencies have been supporting on-farm adaptation strategies such as water harvesting conservation structures to cope with climate hazards that affect agricultural production and food security in agro-pastoral and pastoral systems. The various water harvesting structures that have been promoted include Zai pits for growing crops and trees, water pans and shallow wells for livestock and domestic use, as well as for irrigation. However, the impact of such interventions with regard to improvement of range productivity and therefore welfare of agro-pastoral and pastoral communities has not been felt owing to low adoption rate by households. Results: This study determined social, economic and institutional factors influencing the adoption of water harvesting technologies by households in pastoral areas of Tana river County of Kenya. The data was collected through household survey, focus group discussions and key informant interviews. The results show that access to extension services and training, level of monthly income, main source of livelihood, land tenure, membership in social groups and availability of active farm labor significantly influenced the adoption of water harvesting structures.Conclusion: Pastoralists therefore need to be mobilized and trained on how to construct and use water harvesting structures and sensitized on the potential socioeconomic benefits of adopting them.


2020 ◽  
Vol 28 (8) ◽  
pp. 2635-2656
Author(s):  
Samson Oiro ◽  
Jean-Christophe Comte ◽  
Chris Soulsby ◽  
Alan MacDonald ◽  
Canute Mwakamba

AbstractThe Nairobi volcano-sedimentary regional aquifer system (NAS) of Kenya hosts >6 M people, including 4.7 M people in the city of Nairobi. This work combines analysis of multi-decadal in-situ water-level data with numerical groundwater modelling to provide an assessment of the past and likely future evolution of Nairobi’s groundwater resources. Since the mid-1970s, groundwater abstraction has increased 10-fold at a rate similar to urban population growth, groundwater levels have declined at a median rate of 6 m/decade underneath Nairobi since 1950, whilst built-up areas have increased by 70% since 2000. Despite the absence of significant trends in climatic data since the 1970s, more recently, drought conditions have resulted in increased applications for borehole licences. Based on a new conceptual understanding of the NAS (including insights from geophysics and stable isotopes), numerical simulations provide further quantitative estimates of the accelerating negative impact of abstraction and capture the historical groundwater levels quite well. Analysis suggests a groundwater-level decline of 4 m on average over the entire aquifer area and up to 46 m below Nairobi, net groundwater storage loss of 1.5 billion m3 and 9% river baseflow reduction since 1950. Given current practices and trajectories, these figures are predicted to increase six-fold by 2120. Modelled future management scenarios suggest that future groundwater abstraction required to meet Nairobi projected water demand is unsustainable and that the regional anthropogenically-driven depletion trend can be partially mitigated through conjunctive water use. The presented approach can inform groundwater assessment for other major African cities undergoing similar rapid groundwater development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samaneh Ashraf ◽  
Ali Nazemi ◽  
Amir AghaKouchak

AbstractUsing publicly-available average monthly groundwater level data in 478 sub-basins and 30 basins in Iran, we quantify country-wide groundwater depletion in Iran. Natural and anthropogenic elements affecting the dynamics of groundwater storage are taken into account and quantified during the period of 2002–2015. We estimate that the total groundwater depletion in Iran to be ~ 74 km3 during this period with highly localized and variable rates of change at basin and sub-basin scales. The impact of depletion in Iran’s groundwater reserves is already manifested by extreme overdrafts in ~ 77% of Iran’s land area, a growing soil salinity across the entire country, and increasing frequency and extent of land subsidence in Iran’s planes. While meteorological/hydrological droughts act as triggers and intensify the rate of depletion in country-wide groundwater storage, basin-scale groundwater depletions in Iran are mainly caused by extensive human water withdrawals. We warn that continuation of unsustainable groundwater management in Iran can lead to potentially irreversible impacts on land and environment, threatening country’s water, food, socio-economic security.


2021 ◽  
Vol 54 (1) ◽  
pp. 163-185
Author(s):  
Sung Min Han ◽  
Mi Jeong Shin

AbstractIn this article, we argue that rising housing prices increase voter approval of incumbent governments because such a rise increases personal wealth, which leads to greater voter satisfaction. This effect is strongest under right-wing governments because those who benefit from rising prices—homeowners—are more likely to be right-leaning. Non-homeowners, who are more likely to vote for left-leaning parties, will view rising housing prices as a disadvantage and therefore feel the government does not serve them well, which will mitigate the advantage to left-wing governments. We find support for our arguments using both macro-level data (housing prices and government approval ratings in 16 industrialized countries between 1960 and 2017) and micro-level data (housing prices and individuals’ vote choices in the United Kingdom using the British Household Panel Survey). The findings imply that housing booms benefit incumbent governments generally and right-wing ones in particular.


2021 ◽  
pp. 097265272110153
Author(s):  
Lan Khanh Chu

This article examines the impact of institutional, financial, and economic development on firms’ access to finance in Latin America and Caribbean region. Based on firm- and country-level data from the World Bank databases, we employ an ordered logit model to understand the direct and moderating role of institutional, financial, and economic development in determining firms’ financial obstacles. The results show that older, larger, facing less competition and regulation burden, foreign owned, and affiliated firms report lower obstacles to finance. Second, better macro-fundamentals help to lessen the level of obstacles substantially. Third, the role of institutions in promoting firms’ inclusive finance is quite different to the role of financial development and economic growth. JEL classification: E02; G10; O16; P48


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takashi Oshio ◽  
Hiromi Kimura ◽  
Toshimi Nishizaki ◽  
Takashi Omori

Abstract Background Area-level deprivation is well known to have an adverse impact on mortality, morbidity, or other specific health outcomes. This study examined how area-level deprivation may affect self-rated health (SRH) and life satisfaction (LS), an issue that is largely understudied. Methods We used individual-level data obtained from a nationwide population-based internet survey conducted between 2019 and 2020, as well as municipality-level data obtained from a Japanese government database (N = 12,461 living in 366 municipalities). We developed multilevel regression models to explain an individual’s SRH and LS scores using four alternative measures of municipality-level deprivation, controlling for individual-level deprivation and covariates. We also examined how health behavior and interactions with others mediated the impact of area-level deprivation on SRH and LS. Results Participants in highly deprived municipalities tended to report poorer SRH and lower LS. For example, when living in municipalities falling in the highest tertile of municipality-level deprivation as measured by the z-scoring method, SRH and LS scores worsened by a standard deviation of 0.05 (p < 0.05) when compared with those living in municipalities falling in the lowest tertile of deprivation. In addition, health behavior mediated between 17.6 and 33.1% of the impact of municipality-level deprivation on SRH and LS, depending on model specifications. Conclusion Results showed that area-level deprivation modestly decreased an individual’s general health conditions and subjective well-being, underscoring the need for public health policies to improve area-level socioeconomic conditions.


Sign in / Sign up

Export Citation Format

Share Document