scholarly journals Geoelectrical Survey for Evaluation of Groundwater Potential Within the Basaltic Terrain of Chikotra River Basin, Maharashtra (India)

2021 ◽  
Vol 5 (2) ◽  
pp. 72-84
Author(s):  
Khan Tahama ◽  
Gautam Gupta ◽  
J. D. Patil

Geoelectrical data was acquired using Wenner array over 23 sites with constant electrode separation of 70 m over Chikotra Basin, Dist. Kolhapur, Maharashtra (India). The spatial variation maps of resistivity at depths from 2 to 70 m were plotted using Inverse Distance Weighted (IDW) technique for interpolation in ArcGIS 10.5 to obtain a comprehensive subsurface hydrogeological representation of the study area. High resistivity (>140 Ωm) up to 20m depth, indicative of massive basalts is deciphered towards the NE part of the study area, while the NW sector reveal low resistive (up to 40 Ωm) feature at shallow depths due to fractured basalts, thus conducive for groundwater exploration. Alluvium deposits and columnar jointed basalts in the central part depicts as EW trending conductive (< 30 Ωm) feature suggesting prospective groundwater zone. Low resistivity (6-50 Ωm) from shallow to deeper depths (up to 70m), in the southern region can be identified as potential aquifer system. Longitudinal geoelectric cross-sections are generated over four profiles to identify the lateral and vertical variation in geology and groundwater potential zones. The western and central part of the northern profile (A-A') is highly resistive with resistivity of the order of 80-140 Ωm constituting compact basalts and thus devoid of water. Low resistive zone (30 Ωm) in the eastern part suggests groundwater at shallow depths. Low resistivity zones ranging from 10-50 Ωm is observed at different depth levels over the central profile (B-B') which can be tapped for groundwater exploitation. Several sites over profiles C-C' and the southern-most D-D' suggest promising aquifer zones. Because defining prospective groundwater zones in hard rock terrain is difficult, it’s crucial to look into a river basin’s hydrogeological arrangement early on in the planning process.

1996 ◽  
Vol 14 ◽  
Author(s):  
K. A. Khan

Geophysical study was carried out in the area lying to the east of Islamabad to identify potential aquifers and to establish the relationship between the geoelectric and hydrogeologic parameters. Electrical resistivity survey using the Schlumberger electrode configuration was carried out at 32 stations. Data processing and interpretation were done using a PC based software. The true resistivity and thickness of various subsurface horizons were interpreted in terms of geological columns and cross-sections to reveal the presence of clay, sand, gravel and boulders as the subsurface lithology. The wide occurrence of gravels and boulders suggest that most of the regions in the project area represent the promising zone of groundwater. Both confined and unconfined aquifers have been encountered. The resistivity information was used to plot Dar-Zarrouk curves across selected profiles in order to determine the electrical behaviour of the aquifer. These curves show that the surficial layer is composed of material of high resistivity while the second layer constitutes the aquifer having high longitudinal conductance. Finally, statistical analyses involving linear regression were carried out to find out the relationship between electric and hydraulic properties of the aquifers. The results indicate that there is no significant relationship between the two parameters. All the results were compiled to demarcate promising groundwater drill sites.


2021 ◽  
Vol 35 (2) ◽  
pp. 120-135
Author(s):  
Rosialine Marques Roedel ◽  
Iara de Oliveira Brandao

Groundwater is part of the water supply for industrial use in the Camaçari Industrial Complex (CIC) (Bahia, 2016). Managers from the CIC developed a computational model to evaluate exploitation of groundwater, the Regional Numerical Flow Model (RNFM), which has the function of calculating groundwater volumes for withdrawal in order to choose the best location for the pumping wells and to establish the aquifer hydrological equilibrium during the regime of groundwater withdrawal. In addition to the current management this work proposes hydrogeological criteria for granting groundwater withdrawal permission from the Marizal-São Sebastião aquifer system in the CIC region. To introduce the hydrogeological criteria, this work developed a new water zoning for the aquifer; calculated the water reserves and potentials for each zone; and classified the water zones in terms of the degree of exploitation favorability. To confirm the adequacy of the proposed criteria, this work reevaluated a previous permission process in the region (11 pumping wells), for which the NRFM established the well locations and the groundwater volumes to explore. This work verified that using only the NRFM, which is the current management tool for granting groundwater withdrawal licenses in the CIC region, is not conservative enough for sustainable groundwater withdrawal in each water zone. Using the combination of hydrogeological and numerical methodologies for the pumping wells would result in a better choice for well locations in water zones with larger groundwater potential and favorability, thus promoting a sustainable groundwater exploitation.


2021 ◽  
Vol 13 (1) ◽  
pp. 268-277
Author(s):  
R. Ravi ◽  
S. Aravindan ◽  
C. Ramachandran ◽  
Sanjay Kumar Balabantaray ◽  
B. Selvaraj ◽  
...  

Electrical resistivity is the only property of physics which give information of subsurface moisture content in the formation, Hence geophysical electrical resistivity survey was carried out to investigate the nature of shallow subsurface formations and geological contact in the main Gadilam river basin of Cuddalore District in Tamil Nadu. Twenty-seven vertical electrical soundings (VES) were conducted by Schlumberger configuration in the basin. Data is interpreted by curve matching techniques using IPI2 WIN software, layer parameters like apparent resistivity (?a) and thickness (h) interpretation were exported to Geographic Information System (GIS). Interpretation distinguishes three major geoelectric layers like topsoil, sandy clay layer, clayey sand layer along the contact zone in the basin. Interpreted VES sounding curves are mostly four-layer cases of QH, H, HA and KH type. Investigation demarcates lithology of subsurface and hydrogeological set up by employing maximum possible electrode sounding to infer saline water and freshwater occurrence based on resistivity signals. Zone of groundwater potential map was prepared with the combination of resistivity (?= ?1+ ?2+ ?3+ ?4) and corresponding thickness (T= T1+T2+T3+T4). High resistivity value of >200 ? m and low resistivity value of <10 ? m show the occurrence of alkaline and saline water within the formation aquifers as a result of possible rock water interaction and saline water dissolution. Four-layer resistivity cases from the matched curve (namely KH, AH, QA, and KA type) show the resistivity distribution/variation. It separates the freshwater depth wish from 1 to 140 ? m in fluvial sediments. Flood basin, sandstone and clay layer with low resistivity value of 3.16 - 7.5 ? m indicates contact with saline and freshwater aquifer. The Iso – resistivity map delineates saline water and freshwater zones with in the fourth layer cases in the same locations to indicate the irrational way of abstracting groundwater, resulting in saltwater ingress.


2021 ◽  
Vol 25 (2) ◽  
pp. 233-238
Author(s):  
A. Ojo ◽  
E. Babafemi ◽  
E. Faleye ◽  
O. Shado

This work is an attempt to combine dipole-dipole profiling and vertical electrical sounding techniques of electrical resistivity methods to investigate the groundwater potential within the premises of a 3-star hotel facility in Osogbo, Nigeria by delineating the geoelectric layers, delineating the low resistivity layers, determining the lithologies and hence, delineating the groundwater bearing zones. The five vertical electrical sounding data were collected along two pre-surveyed dipole-dipole traverses at right angle to each other beside the fences of the premises using the ABEM SAS 300c terrameter. The observed data were interpreted quantitatively using curve matching and computer-assisted iteration method using the WinResist and Dipro software. The results of the inversion show that the lithology comprises of the top soil and an intermittent sequence of sand and lateritic clay having varying resistivity and thickness. The aquiferous layer was observed to be located at a depth of 23 m to 25 m due to the low resistivity and high thickness of the aquiferous layer. The result of the 2-D imaging closely correlates with the result of the vertical electrical sounding. Thus, combining these techniques in groundwater investigation has achieved similar result as the Werner technique and has reduced ambiguity and error in positioning for drilling. Keywords: Resistivity, Groundwater Exploration, Dipole-Dipole


2018 ◽  
Vol 2 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Vaishnavi Mundalik ◽  
Clinton Fernandes ◽  
Ajaykumar Kadam ◽  
Bhavana Umrikar

Groundwater is an important source of drinking water in rural parts of India. Because of the increasing demand for water, it is essential to identify new sources for the sustainable development of this resource. The potential mapping and exploration of groundwater resources have become a breakthrough in the field of hydrogeological research. In the present paper, a groundwater prospects map is delineated for the assessment of groundwater availability in Kar basin on basaltic terrain, using remote sensing and Geographic Information System (GIS) techniques. Various thematic layers such as geology, slope, soil, geomorphology, drainage density and rainfall are prepared using satellite data, topographic maps and field data. The ranks and weights were assigned to each thematic layer and various categories of those thematic layers using AHP technique respectively. Further, a weighted overlay analysis was performed by reclassifying them in the GIS environment to prepare the groundwater potential map of the study area. The results show that groundwater prospects map classified into three classes low, moderate and high having area 17.12%, 38.26%, 44.62%, respectively. The overlay map with the groundwater potential zones in the study area has been found to be helpful for better planning and managing the resources.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 122
Author(s):  
Irina Medved ◽  
Elena Bataleva ◽  
Michael Buslov

This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


1988 ◽  
Vol 110 (3) ◽  
pp. 448-455 ◽  
Author(s):  
Har Prashad

The present work deals with the investigations carried out on the various rolling element bearings after being operated under the influence of electric fields, and pure rolling friction on the roller bearing test machine. The significant magnetic flux density was detected on surfaces of the bearings lubricated with low-resistivity grease under the influence of electrical fields. No such phenomenon was observed either on bearings using high or low-resistivity greases under pure rolling friction or on bearings lubricated with high-resistivity grease under the influence of electrical fields. New bearing surfaces do not show significant magnetic flux density but it has been detected after long operation on different motor bearings, lubricated with low resistivity greases. The electroadhesion forces in the bearings using low-resistivity greases increase under the influence of electrical fields in contrast to those with high resistivity greases. Under pure rolling friction resistivity of greases do not affect the electroadhesion forces. The investigations reported in this paper along with the study of damaged/corrugated surfaces, and deterioration of the used greases [1, 2, 3], the leakage of current leading to failure of the noninsulated motor bearings can be established.


2021 ◽  
Vol 14 (12) ◽  
pp. 13-22
Author(s):  
Ajgaonkar Swanand ◽  
S. Manjunatha

Groundwater research has evolved tremendously as presently it is the need of society. Remote Sensing (RS) and Geographical Information System (GIS) are the main methods in finding the potential zones for the groundwater. They help in assessing, exploring, monitoring and conserving groundwater resources. A case study was conducted to find the groundwater potential zones in Lingasugur taluk, Raichur District, Karnataka State, India. Ten thematic maps were prepared for the study area such as geology, hydrogeomorphology, land use/ land cover, soil type, NDVI, NDWI, slope map, lineament density, rainfall and drainage density. A weighted overlay superimposed method was used after converting all the thematic maps in raster format. Thus from analysis, the classes in groundwater potential were made as very good, moderate, poor and very poor zones covering an area of 10.1 sq.km., 169.25 sq.km., 1732.31 sq.km. and 53.66 sq.km. respectively. By taking the present study into consideration, the future plans for urbanization, recharge structures and groundwater exploration sites can be decided.


2021 ◽  
Author(s):  
Li yueting ◽  
Pietro Teatini ◽  
Shujun Ye ◽  
Andrea Franceschini ◽  
Matteo Frigo ◽  
...  

&lt;p&gt;Aseismic earth fissures due to the excessive groundwater exploitation have caused seriously damage in many subsiding sedimentary basins worldwide. Generally, multiple fissures almost parallel to each other with equal distances are prone to develop where a compacting aquifer system overlies impermeable and/or incompressible ridges. Here, an advanced finite-element interface-elements modelling approach is employed to understand this process within unfaulted sedimentary sequences. A simplified geological setting is initially used to investigate the effect of the ridge slope on ruptures behaviors. Then, we reproduce the case of Guangming village, China. In both the proposed scenarios, the model simulates the occurrence of multi-fissures that initiate at land surface and propagate downward, as observed in the sites. The earth fissures are formed as a result of the combination of tensile stress (bending condition) and shear stress (shearing conditions) accumulation around and above the tip and the slopes of the ridge, respectively. The numerical outcomes indicate that the steeper ridge results in higher magnitude stress accumulation above the ridge tip which favors the formation of fissures with significant opening and small or null offset, but at expense of the reduction in stress accumulation area and fissure distribution. In Guangming case, the outcomes show that two ruptures started sliding and only one year later a central fissure opened and propagated down to 15-30 m depth. The simulated maximum opening and sliding of the central and side fissures, respectively, approximate 30 cm, which are almost in agreement with the observations. The numerical results prove that the proposed modeling approach is an effective way to predict and analyze multi-fissure onset and development in subsiding basins.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document