scholarly journals Supercritical Extraction Technology of Obtaining Polyunsaturated Acids from Starfish (Lysastrosoma anthosticta Fisher, 1922)

2022 ◽  
Vol 51 (4) ◽  
pp. 753-758
Author(s):  
Alexander Zakharenko ◽  
Konstantin Kirichenko ◽  
Igor Vakhniuk ◽  
Kirill Golokhvast

Introduction. Starfish (Asteroidea) are marine echinoderms with more than 160 species. Starfish are a valuable source of protein and fats. The present research featured the chemical composition of starfish, which can be used as a commercial source of lipids. Study objects and methods. The study defined the optimal parameters for extracting the lipid fraction of Lysastrosoma anthosticta with supercritical carbon dioxide, as well as the qualitative composition of the obtained extracts. Results and discussion. The yield of fatty acids obtained with supercritical carbon dioxide co-solvent was 1.8 times higher than that obtained with standard extraction according to the Folch method. The content of impurities was lower than in the samples with chloroform-methanol system. The polyunsaturated fatty acids isolated from L. anthosticta mainly belonged to ω-3 (18.0%), ω-6 (11.7%), ω-7 (21.2%), ω-9 (10.1%), and ω-11 (6.5%). The rest was saturated fatty acids, mainly palmitic (14%) and myristic (6%). The qualitative composition of the lipid fraction did not depend significantly from the isolation method. However, the supercritical extraction increased the product yield, extraction rate, and the quality of the extraction residue. Supercritical carbon dioxide left a dry residue, which had no typical smell and was brittle enough for grinding. Such residue can presumably be used to produce protein concentrate. Conclusion. Supercritical extraction with chloroform can be recommended to isolate fatty acids from marine organisms at 60°C and 400 bar.

2019 ◽  
Vol 7 (4.14) ◽  
pp. 221
Author(s):  
S. N. Ibrahim ◽  
K. A. Radzun ◽  
K. Ismail

Chlorella vulgaris is one of the promising microalgae strains that can produce high yield of bio-oils. The C. vulgaris was pretreated with microwave irradiation prior to extraction using supercritical carbon dioxide (SCCO2). Fourier transform infrared spectroscopy (FTIR) analysis showed microwave irradiation pretreatment does not affect the material composition of C. vulgaris. Scanning electron microscopy (SEM) of the microwave irradiation pretreated microalgae showed an agglomeration of the cells with the cells shape became distorted due to rupturing of the cell walls. Optimization of the SCCO2 process parameters (pressure, temperature and CO2 flow rate) was performed by using response surface methodology (RSM) with central composite design (CCD). Two factors significantly affecting the extraction yield were temperature and pressure. The model equation also predicted the optimum condition for the SCCO2 (without microwave pretreatment) at 70 , 5676 psi and 7 sL/ min while optimum condition for SCCO2 (microwave irradiation pretreatment) at 63 , 5948 psi and 10 sL/ min. High amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), -linolenic acid and palmitoleic acid were found in the extracted oil with microwave irradiation pre-treatment sample.  In addition, the polyunsaturated fatty acids (PUFA) content in the microwave irradiation pretreated oil was considerably low and is desirable for biodiesel production. 


2013 ◽  
Vol 58 (6) ◽  
pp. 1861-1866 ◽  
Author(s):  
Vivek Trivedi ◽  
Ruchir Bhomia ◽  
John C Mitchell ◽  
Nichola J Coleman ◽  
Dennis Douroumis ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Sahena Ferdosh ◽  
Kamaruzzaman Yunus ◽  
Mohammad A. Rashid ◽  
Zaidul Islam Sarker

Background: The composition and bioactivity of natural plant extracts strongly depend on the extraction technique employed. Clinacanthus nutans Lindau (C. nutans) is a well-known medicinal plant in South-East Asia that has been traditionally used for the treatment of various diseases. Several conventional methods have been using for extraction of bioactive compounds from C. nutans. However, extraction of fatty acids using supercritical carbon dioxide was not reported yet from this medicinal herbs. Objective: The main objective of the study is to examine the potential of supercritical carbon dioxide (scCO2) extraction of fatty acids from leaves and stems of C. nutans. Method: Fatty acid compositions were determined from leaves and stems of C. nutans oil extracted by scCO2 (temperature 45-65 °C, pressure 25-35 MPa), and compared to the results of Soxhlet extraction. Results: Supercritical CO2 extraction shows the highest oil recovery in both leaves (3.7%) and stems (1.6%) at pressure 35 MPa, temperature 65 °C and 2 ml/min flow rate, which was closer to the yield of Soxhlet. The scCO2 yields presented a higher percentage of polyunsaturated fatty acids (PUFA), especially linoleic acid (C18:2n-6). Palmitic acid ranging from 42%- 47% in leaves and stems of C. nutans was found dominant saturated fatty acids (SFA) in both scCO2 and Soxhlet method. Conclusion: The current results indicate that leaves and stems of C. nutans could be a potential source of fatty acids especially biologically active compounds.Conclusion: The current results indicate that leaves and stems of C. nutans could be a potential source of fatty acids especially biologically active compounds.


2008 ◽  
Vol 47 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Alexandre Teixeira de Souza ◽  
Toni Luis Benazzi ◽  
Marcelo Boer Grings ◽  
Vladimir Cabral ◽  
Edson Antônio da Silva ◽  
...  

2018 ◽  
pp. 91-97
Author(s):  
Artyom Dmitrievich Ivakhnov ◽  
Kristina Sergeevna Sadkova ◽  
Alina Sergeyevna Sobashnikova ◽  
Tat'yana Eduardovna Skrebets ◽  
Mikhail Vladislavovich Bogdanov

Comparative researches of ways of oil extraction from the fulfilled fruits of cloudberries (Rubus chamaemorus) with application of hexane and supercritical carbon dioxide as solvents are executed. Optimization is performed and optimum conditions of supercritical fluid extraction of oil are defined with use of central composite design of 2nd order. Pressure of carbon dioxide of 350 atm, temperature 85 °C, duration of extraction of 80 min are the optimum conditions of carrying out of the process. The yield of oil is 9.0%. Quality key indicators of the received oil were defined. The difference between the oil received by the SKF-CO2 method and the oil received by hexane extraction consists in improvement of organoleptic properties, the raised share of the combined fatty acids at decrease of a share of the free acids and high content of unsaturated fatty acids. It is shown that supercritical carbon dioxide can be an alternative to the hydrocarbons which are traditionally used for these purposes.


2005 ◽  
Vol 48 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Ana Cristina Atti-Santos ◽  
Marcelo Rossato ◽  
Luciana Atti Serafini ◽  
Eduardo Cassel ◽  
Patrick Moyna

In this work lime essential oils were extracted by hydrodistillation and supercritical carbon dioxide. In the case of hydrodistillation, the parameters evaluated were extraction time and characteristics of the plant material. In supercritical extraction, the parameters evaluated were temperature, pressure, CO2 flow, extraction time and material characteristics. Considering citral content, the best results for hydrodistillation were obtained with a distillation time of 3 hours using whole peels. The best results for supercritical extraction were found using 60ºC, 90 bar, at a CO2 flow rate of 1 mL/ min for 30 minutes using milled peels. The best yields of lime oil were obtained by hydrodistillation (5.45% w/w) and supercritical extraction (7.93% w/w) for milled peels.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1836
Author(s):  
Lijuan Han ◽  
Qingqing Han ◽  
Yongjing Yang ◽  
Honglun Wang ◽  
ShuLin Wang ◽  
...  

Characterization of the structure and pharmacological activity of Berberis dasystachya Maxim., a traditional Tibetan medicinal and edible fruit, has not yet been reported. In this study, central composite design (CCD) combined with response surface methodology (RSM) was applied to optimize the extraction conditions of B. dasystachya oil (BDSO) using the supercritical carbon dioxide (SC-CO2) extraction method, and the results were compared with those obtained by the petroleum ether extraction (PEE) method. The chemical characteristics of BDSO were analyzed, and its antioxidant activity and in vitro cellular viability were studied by DPPH, ABTS, reducing power assay, and MTT assay. The results showed that the maximum yield of 12.54 ± 0.56 g/100 g was obtained at the optimal extraction conditions, which were: pressure, 25.00 MPa; temperature 59.03 °C; and CO2 flow rate, 2.25 SL/min. The Gas chromatography (GC) analysis results showed that BDSO extracted by the SC-CO2 method had higher contents of unsaturated fatty acids (85.62%) and polyunsaturated fatty acids (57.90%) than that extracted by the PEE method. The gas chromatography used in conjunction with ion mobility spectrometry (GC–IMS) results showed that the main volatile compounds in BDSO were aldehydes and esters. BDSO also exhibited antioxidant ability in a dose-dependent manner. Moreover, normal and cancer cells incubated with BDSO had survival rates of more than 85%, which indicates that BDSO is not cytotoxic. Based on these results, the BDSO extracted by the SC-CO2 method could potentially be used in other applications, e.g., those that involve using berries of B. dasystachya.


Sign in / Sign up

Export Citation Format

Share Document