scholarly journals GROWTH, NODULATION, YIELD AND MINERAL TISSUE CONTENT OF PEANUT IN RESPONSE TO FOLIAR AND COATING APPLICATION OF HUMIC ACID AND PLANT GROWTH –PROMOTING RHIZOBACTERIA

2017 ◽  
Vol 6 ((E2)) ◽  
pp. 195-202
Author(s):  
El-Syed R ◽  
Hoda Galal ◽  
Yassen Y
2018 ◽  
Vol 109 (4) ◽  
pp. 479-489 ◽  
Author(s):  
R. Sattari Nasab ◽  
M. Pahlavan Yali ◽  
M. Bozorg-Amirkalaee

AbstractThe cabbage aphid, Brevicoryne brassicae L. (Hem: Aphididae), is an important pest of canola that can considerably limit profitable crop production either through direct feeding or via transmission of plant pathogenic viruses. One of the most effective approaches of pest control is the use of biostimulants. In this study, the effects of humic acid, plant growth-promoting rhizobacteria (PGPR), and integrated application of both compounds were investigated on life table parameters of B. brassicae, and the tolerance of canola to this pest. B. brassicae reared on plants treated with these compounds had the lower longevity, fecundity, and reproductive period compared with control treatment. The intrinsic rate of natural increase (r) and finite rate of increase (λ) were lowest on PGPR treatment (0.181 ± 0.004 day−1 and 1.198 ± 0.004 day−1, respectively) and highest on control (0.202 ± 0.005 day−1 and 1.224 ± 0.006 day−1, respectively). The net reproductive rate (R0) under treatments of humic acid, PGPR and humic acid + PGPR was lower than control. There was no significant difference in generation time (T) of B. brassicae among the tested treatments. In the tolerance test, plants treated with PGPR alone or in integrated with humic acid had the highest tolerance against B. brassicae. The highest values of total phenol, flavonoids, and glucosinolates were observed in treatments of PGPR and humic acid + PGPR. Basing on the antibiosis and tolerance analyses in this study, we concluded that canola plants treated with PGPR are more resistant to B. brassicae. These findings could be useful for integrated pest management of B. brassicae in canola fields.


2019 ◽  
Vol 11 (12) ◽  
pp. 3417 ◽  
Author(s):  
Zehra Ekin

In sustainable agriculture, seeking eco-friendly methods to promote plant growth and improve crop productivity is a priority. Humic acid (HA) and plant growth promoting rhizobacteria (PGPR) are among the most effective methods that utilize natural biologically-active substances. The aim of the present study was to analyze the effect of the presence of HA on potato (Solanum tuberosum L.) inoculation with PGPR (Bacillus megatorium and Bacillus subtilis) when compared to control and recommended doses of NPK. Seed tubers treated by humic acid (200, 400, and 600 kg ha−1) and PGPR, separately or in combination, and NPK (50% and 100%) were planted into soil and untreated soil. Treatments were assessed for plant growth, classified tuber yields, quality, and mineral contents of potato tubers. There were highly significant increases in potato growth, tuber yields, and quality in PGPR and HA inoculated crops. Tuber size, weight, specific gravity, dry matter, starch, protein, and mineral contents (except Cu) were improved with PGPR treatments and further increased when administered with humic acids. Inoculation with PGPR mixed culture and 400 kg ha−1 HA increased total potato tuber yield by about 140% while conventional single treatment of 100% NPK fertilizer only led to an increase in potato production of 111% when compared to the control. The results demonstrated that this integrated approach has the potential to accelerate the transformation from conventional to sustainable potato production.


Three bacterial species of plant growth promoting rhizobacteria (PGPR) namely Paenibacillus polymyxa, Methylobacterium mesophilicum and Methylobacterium radiotolerans were tested alone or combined with humic acid as bio-control agents against the citrus nematode Tylenchulus semipenetrans under laboratory and field conditions. Results cleared that; all tested PGPR species produced IAA, HCN, ammonia, chitinase and protease enzymes and also solubilized phosphate in laboratory. P. polymyxa emphasized the superiority among other species in all PGPR properties except for phosphate solubilization, whereas M. radiotolerans showed highest amount of phosphorus solubilized in culture media. On the other hand, the results of the nematode survey conducted on orange, Citrus sinensis L. cv Balady grown in different localities of Ismailia and Sharkia Governorates during season 2019, revealed the presence of seven genera and species of plant-parasitic nematodes. Among which, T. semipenetrans occurred in all examined samples (100% frequency of occurrence) with a relatively high population density of 2330 and 2640 infected juveniles (J2) /250 g soil in Ismailia and Sharkia Governorates, respectively. Field experiments were conducted in two different locations, at Ismailia and Sharkia Governorates to assess the effectiveness of PGPR strains alone or combined to reduce the numbers of T. semipenetrans during season 2019. It was found that, all treatments caused significant (P≤0.05) reduction in T. semipenetrans population, compared to control treatment. The nematicide, Nemathorin® 10% G followed by P. polymyxa (20 L.fed-1 ) + foliarspraying of M. mesophilicm (5 L.fed-1 ) gave the highest efficacy in controlling the citrus nematode. Percentage reduction in numbers of J2/250g soil and adult females/1g roots for these treatments in Ismailia Governorate were 91% (85.7%) and 91.4% (89.5%), respectively. While the parallel values in Sharkia Governorate were 90% (87%) and 94% (90%), respectively. The combination of P. polymyxa and humic acid (20 L.fed-1 ) with foliar spraying of M. mesophilicm (5 L.fed-1 ) gained the third position. All treatments increased the fruit yield compared to control treatment. The highest percentages of increase were determined with Nemathorin (160% and 206%) followed by P. polymyxa + Humic acid (20 L.fed-1 ) + foliar spraying of M. mesophilicum (155.7% and 193%) and M. radiotolerans + P. polymyxa + foliar spraying of M. mesophilicum (153% and182%) in Ismailia, and Sharkia Governorates respectively.


2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document