scholarly journals Protein glycation and drought response of pea (Pisum sativum L.) root nodule proteome: a proteomics approach

2021 ◽  
Vol 66 (3) ◽  
Author(s):  
Julia Shumilina ◽  
Daria Gorbach ◽  
Veronika Popova ◽  
Alexander Tsarev ◽  
Alena Kuznetsova ◽  
...  

Because of ongoing climate change, drought is becoming the major factor limiting productivity of all plants, including legumes. As these protein-rich crops form symbiotic associations with rhizobial bacteria — root nodules — they readily lose their productivity under drought conditions. Understanding the underlying molecular mechanisms might give access to new strategies to preserve the productivity of legume crops under dehydration. As was shown recently, development of drought response is accompanied by alterations in the patterns of protein glycation and formation of advanced glycation end products (AGEs) that might be a part of unknown regulatory mechanisms. Therefore, here we address the effects of moderate drought on protein dynamics and AGE patterns in pea (Pisum sativum) root nodules. For this, plants inoculated with rhizobial culture were subjected to osmotic stress for one week, harvested, the total protein fraction was isolated from root nodules by phenol extraction, analyzed by bottom-up LC-MS-based proteomics, and AGE patterns were characterized. Surprisingly, despite the clear drought-related changes in phenotype and stomatal conductivity, only minimal accompanying expressional changes (14 rhizobial and 14 pea proteins, mostly involved in central metabolism and nitrogen fixation) could be observed. However, 71 pea and 97 rhizobial proteins (mostly transcription factors, ABC transporters and effector enzymes) were glycated, with carboxymethylation being the major modification type. Thereby, the numbers of glycated sites in nodule proteins dramatically decreased upon stress application. It might indicate an impact of glycation in regulation of transport, protein degradation, central, lipid and nitrogen metabolism. The data are available at Proteome Xchange (accession: PXD024042).

2019 ◽  
Vol 70 (1) ◽  
pp. 59-67
Author(s):  
Anna Lenart-Boroń ◽  
Tadeusz Zając ◽  
Piotr Mateusz Boroń ◽  
Agnieszka Klimek-Kopyra

SummaryThe bacterial nodulation (nod) genes are essential in the formation process of root nodules. This study was aimed to verify the occurrence of nodule-associated bacteria in two pea varieties (“Tarchalska” and “Klif ”) inoculated withRhizobiuminoculants – Nitragine™ and a noncommercial one produced by the Polish Institute of Soil Science and Plant Cultivation (IUNG). The number of colonies isolated on yeast extract mannitol (YEM) agar from the nodules of “Klif ” inoculated with IUNG inoculants was significantly higher than the number of colonies isolated from other variants. Species identification was based on sequencing of 16S rDNA, which revealed that despite careful sterilization of nodules, sequences of other bacterial species were detected. Among them, one sequence belonged toRhizobium leguminosarum(isolated from IUNG inoculant). To assess the presence of nodulation-capableRhizobium, amplification of thenodCgene was performed, which revealed that of 29 samples, 19 were positive. The remaining isolates, including reference strain and bacteria isolated from Nitragine™, lacked this gene. The results show that pea nodules harbor a very diverse community of bacteria. The lack ofnodCgene in some strains isolated from plants inoculated with Nitragine™ and with IUNG inoculant proves that even ifR. leguminosarumare abundant, they may not be efficient in nodulation.


2017 ◽  
Vol 30 (4) ◽  
pp. 312-324 ◽  
Author(s):  
George C. diCenzo ◽  
Maryam Zamani ◽  
Hannah N. Ludwig ◽  
Turlough M. Finan

The bacterium Sinorhizobium meliloti Rm2011 forms N2-fixing root nodules on alfalfa and other leguminous plants. The pSymB chromid contains a 110-kb region (the ETR region) showing high synteny to a chromosomally located region in Sinorhizobium fredii NGR234 and related rhizobia. We recently introduced the ETR region from S. fredii NGR234 into the S. meliloti chromosome. Here, we report that, unexpectedly, the S. fredii NGR234 ETR region did not complement deletion of the S. meliloti ETR region in symbiosis with Medicago sativa. This phenotype was due to the bacA gene of NGR234 not being functionally interchangeable with the S. meliloti bacA gene during M. sativa symbiosis. Further analysis revealed that, whereas bacA genes from S. fredii or Rhizobium leguminosarum bv. viciae 3841 failed to complement the Fix− phenotype of a S. meliloti bacA mutant with M. sativa, they allowed for further developmental progression prior to a loss of viability. In contrast, with Melilotus alba, bacA from S. fredii and R. leguminosarum supported N2 fixation by a S. meliloti bacA mutant. Additionally, the S. meliloti bacA gene can support N2 fixation of a R. leguminosarum bacA mutant during symbiosis with Pisum sativum. A phylogeny of BacA proteins illustrated that S. meliloti BacA has rapidly diverged from most rhizobia and has converged toward the sequence of pathogenic genera Brucella and Escherichia. These data suggest that the S. meliloti BacA has evolved toward a specific interaction with Medicago and highlights the limitations of using a single model system for the study of complex biological topics.


1989 ◽  
Vol 16 (4) ◽  
pp. 305 ◽  
Author(s):  
G Shearer ◽  
DH Kohl

Nodules of certain N2-fixing root nodules are substantially enriched in 15N compared with non-nodular tissues. This enrichment usually resides largely within bacteroids. Isotope discrimination associated with export of ammonia(um) from the bacteroid would result in 15N enrichment of NH4+ within bac- teroids. Bacteroid protein synthesis from this pool of 15N enriched NH4+ would then account for enrichment of the bacteroids. Measurements of 15N abundances of total N and free NH4+ in nodule fractions from lupins (Lupinus luteus), soybeans (Glycine max) and peas (Pisum sativum) showed this was not the case. With the inocula used in experiments reported here, lupin and soybean nodules were enriched in 15N, while pea nodules were not. There was no correlation between 15N abundances of NH4+ and total N in the nodule fractions (r= 0.445, P> 0.2). We conclude that isotope discrimination associated with ammonia(um) transport does not explain the 15N elevation of lupin and soybean nodules. We also conclude, on the basis of the large isotope effect for the equilibrium between NH4+ and NH3, that most of the ammonia(um) is exported from bacteroids as NH4+ rather than NH3. We also measured the 15N abundance of free amide N. There was a strong correlation between 15N abundances of free amide N and total N in nodule fractions (r=0.924, P<0,001), suggesting that amide N is a significant source of N to the amino acid pools from which proteins are synthesised.


Author(s):  
Ze Peng ◽  
Huiqiong Chen ◽  
Lubin Tan ◽  
Hongmei Shu ◽  
Rajeev K Varshney ◽  
...  

Abstract Microbial symbiosis in legumes is achieved through nitrogen-fixing root nodules, which is important for sustainable agriculture. The molecular mechanisms underlying development of root nodules in polyploid legume crops are largely understudied. Through map-based cloning and QTL-seq approaches, we identified a pair of homoeologous GRAS transcription factor genes, Nodulation Signaling Pathway 2 (AhNSP2-B07 or Nb) and AhNSP2-A08 (Na), controlling nodulation in cultivated peanut (Arachis hypogaea L.), an allotetraploid legume crop, which exhibited non-Mendelian and Mendelian inheritance, respectively. The segregation of nodulation in the progeny of Nananbnb genotypes followed a 3:1 Mendelian ratio, in contrast to the 5:3 ~ 1:1 non-Mendelian ratio for nanaNbnb genotypes. Additionally, a much higher frequency of the nb allele (13%) than the na allele (4%) exists in the peanut germplasm collection, suggesting that Nb is less essential than Na in nodule organogenesis. Our findings provided the genetic basis of naturally occurred non-nodulating peanut plants, which can be potentially used for nitrogen fixation improvement in peanut. Furthermore, the results provided implications and insights into the evolution of homoeologous genes in allopolyploid species.


2002 ◽  
Vol 68 (5) ◽  
pp. 2161-2171 ◽  
Author(s):  
Ranjeet K. Tokala ◽  
Janice L. Strap ◽  
Carina M. Jung ◽  
Don L. Crawford ◽  
Michelle Hamby Salove ◽  
...  

ABSTRACT A previously undescribed plant-microbe interaction between a root-colonizing Streptomyces species, S. lydicus WYEC108, and the legume Pisum sativum is described. The interaction is potentially of great importance to the health and growth in nature of this nodulating legume. The root-colonizing soil actinomycete S. lydicus WYEC108 influences pea root nodulation by increasing root nodulation frequency, possibly at the level of infection by Rhizobium spp. S. lydicus also colonizes and then sporulates within the surface cell layers of the nodules. Colonization leads to an increase in the average size of the nodules that form and improves the vigor of bacteroids within the nodules by enhancing nodular assimilation of iron and possibly other soil nutrients. Bacteroid accumulation of the carbon storage polymer, poly-β-hydroxybutyrate, is reduced in colonized nodules. Root nodules of peas taken from agricultural fields in the Palouse hills of northern Idaho were also found to be colonized by actinomycete hyphae. We hypothesize that root and nodule colonization is one of several mechanisms by which Streptomyces acts as a naturally occurring plant growth-promoting bacterium in pea and possibly other leguminous plants.


2015 ◽  
Vol 28 (12) ◽  
pp. 1353-1363 ◽  
Author(s):  
Pauline Blanquet ◽  
Liliana Silva ◽  
Olivier Catrice ◽  
Claude Bruand ◽  
Helena Carvalho ◽  
...  

Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.


2008 ◽  
Vol 6 (2) ◽  
pp. 27-34
Author(s):  
Elena A Dolgikh ◽  
Irina V Leppyanen ◽  
Maria A Osipova ◽  
Igor A Tikhonovich

The signal molecules produced by legume plants and soil bacteria rhizobia and involved in early steps of symbiosis regulation were identified through the evaluation of molecular mechanisms of plant-rhizobia communication. The molecular dialog between plants and rhizobia is initiated by plant flavanoids inducing the synthesis and secretion of lipochitooligosaccharide molecules Nod factors by rhizobial bacteria. Nod factors are N-acetylglucosamine oligomers, modified by fatty acid and certain chemical groups. Nod factors trigger a set of plant reactions resulting in a formation of root nodules - nitrogen fixing symbiotic organs. Fine chemical structure of signal molecules determines host specificity of the symbiosis. Nod factors are active in low concentrations and possess mitogenic and morphogenic activity, therefore they are recognized as the new class of growth regulators. In this paper the modern data about study of Nod factor perception mechanisms and signal transduction pathway in legume plants are presented and considered with perspective for future application of these knowledge for practical increasing of symbiosis efficiency from plant side. This work was supported by RFBR 07-08-00700a (Russian Foundation of Basic Research), CRDF RUXO-012-ST-06 (BP2M12) and HIII-5399. 2008. 4, RFBR-NWO (06-04-89000-НВОЦ-а) grants.


Sign in / Sign up

Export Citation Format

Share Document