scholarly journals Study of arsenic (V) removal of water by using agglomerated alumina

Nova Scientia ◽  
2019 ◽  
Vol 11 (23) ◽  
pp. 01-25 ◽  
Author(s):  
Rafael Romero Toledo ◽  
Víctor Ruiz Santoyo ◽  
Luis M. Anaya Esparza ◽  
Alejandro Pérez Larios ◽  
Merced Martínez Rosales

Arsenic is a toxic element for human health. It persists in the environment as a result of natural and anthropic contamination, generating nocive effects for consumers. Some of them can be cancer, cardiovascular disorders, hypotension, metabolic disease and peripheral neuropathy. Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. The objective of this study was to generate a low cost agglomerated alumina adsorbent (A-1) for the effective removal of arsenic (V) from water and its comparison with a commercial agglomerated alumina (A-2). Both of them of 5 mm of diameter. The physicochemical properties of the adsorbents were characterized by various techniques, such as: XRF, zeta potential, XRD, adsorption-desorption of N2 and FE-SEM/EDS. Batch experiments were performed to evaluate the efficiency of removal of As (V) from water by A-1 and A-2. The point of zero charge of A-1 and A-2 was at pH 8.5 and 8.1, respectively. The experimental results in batches indicated that agglomerate A-1 has a higher adsorption capacity than A-2 (1.212 mg∙g-1; 1.058 mg∙g-1) in similar conditions, concentration of 15 mg∙L-1 of As (V), temperature (20± 2 °C) and pH 7. The adsorption processes of As (V) in A-1 and A-2 followed the kinetics of Pseudo-first order kinetic and the Freundlich isotherm. The results showed that the agglomerate A-1 is an attractive adsorbent for the effective removal of As (V) from water.

2012 ◽  
Vol 455-456 ◽  
pp. 786-795
Author(s):  
Jian Hua Chen

- In this study, sodium alginate based porous membrane adsorbents (GA/SA) were prepared by using polyethylene glycol (PEG) as porogen and glutaraldehyde (GA) as cross-linking agent. The prepared GA/SA were used to remove Cr (III) ions from wastewater to test its adsorption performance. The proposed technique is very convenient for operation. The batch experiments were performed to investigate the adsorption kinetics of Cr (III) ions from aqueous solution under different conditions, such as the amount of PEG in the GA/SA, pH of solution, initial Cr (III) ions concentration, adsorbent dose and contact time. The GA/SA exhibited the maximum uptake capacity of 57.4 mg/g under the optimal condition. The experiment results show that the adsorption is high pH-dependent. Various kinetic models were applied to examine the mechanism of adsorption processes. Pseudo-second-order kinetic model exhibits the best correlation with experimental data. The kinetic experiment results show that the adsorption of Cr (III) ions is a multistep limited adsorption process. Out of Langmuir and Freundlich isotherm equations, the batch equilibrium data are better described by the Freundlich isotherm equation. The prepared GA/SA could be considered as a potential low-cost and high-effective bio-sorbent for removing and recovering Cr (III) ions from the aqueous solutions.


2020 ◽  
Author(s):  
Gietu yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background: The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results: The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model.Conclusion: In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


2020 ◽  
Author(s):  
Gietu yirga Abate ◽  
Adugna Nigatu Alene ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

Abstract Background: The release of hazardous synthetic dyes into industrial effluents has emerged as an environmental problem requiring remediation. The present study focused on the preparation of a new and environmentally-friendly material (adsorbent) for the remediation of hazardous dyes from aqueous solution. The low cost adsorbent was prepared from locally available khat (Catha edulis) stem which considered as waste and accumulated on waste disposal areas of Woldia town, Ethiopia. Comprehensive characterization studies were carried out on the bio-adsorbent such as proximate analyses, specific surface area, point of zero charge and FT-IR analysis. Results: The proximate analysis shows the prepared adsorbent has very high fixed carbon content (83.65%), which refers to high quality of the adsorbent. The adsorption performance of the prepared activated carbon was optimized by varying operational parameters such as initial dye concentration (10 mg/L), pH (10), dosage (0.5 g), and contact time (60 min). The maximum removal efficiency of the prepared adsorbent at those optimum conditions was 98.8%. The experimental data was tested by most common kinetics and isotherm models. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Freundlich isotherm model. Conclusion: In summery this study demonstrated that the waste bio sorbent could be employed as an effective and eco-friendly alternative for the cleanup of dye-polluted aqueous system.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1771
Author(s):  
Tomasz Kalak ◽  
Ryszard Cierpiszewski ◽  
Małgorzata Ulewicz

In these research studies, fly ash (SW-FA) resulting from the incineration of sunflower (20%) and wood (80%) waste employing the circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Pb(II) and Cu(II) ions in adsorption processes. Currently, great emphasis is placed on circular economy, zero waste or climate neutrality strategies. The use of low-cost SW-FA waste seems to fit well with pro-ecological, economic and energy-saving trends. Hence, this material was characterized by various techniques, such as granulation analysis, bulk density, SEM-EDX, XRD and XRF analysis, BET, BJH, thermogravimetry, zeta potential, SEM morphology and FT-IR spectrometry. As a result of the conducted research, the factors influencing the effectiveness of the adsorption process, such as adsorbent dosage, initial and equilibrium pH, initial metal concentration and contact time, were analyzed. The maximum removal efficiency were achieved at the level of 99.8% for Pb(II) and 99.6% for Cu(II), respectively. The kinetics analysis and isotherms showed that the pseudo-second-order equation and the Freundlich isotherm models better describe these processes. The experiments proved that SW-FA can act as an appropriate adsorbent for highly effective removal of lead and copper from wastewater and improvement of water quality.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2586
Author(s):  
Inas A. Ahmed ◽  
Ahmed H. Ragab ◽  
Mohamed A. Habila ◽  
Taghrid S. Alomar ◽  
Enas H. Aljuhani

In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone—chitosan–alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m2/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH0) was 37.7 KJ mol−1 for CR and 8.71 KJ mol−1 for BG, while the entropy change (ΔS0) was 89.1 J K−1 mol−1 for CR and 79.1 J K−1 mol−1 BG, indicating that the adsorption process was endothermic and spontaneous in nature.


2018 ◽  
Vol 53 ◽  
pp. 04004 ◽  
Author(s):  
Xiaofan Yang ◽  
Xueyu Wei ◽  
Xiaoping Xu ◽  
Zhigang Liu

Microcystin-LR (MC-LR) is one of the most notorious toxins liberated from cyanobacteria in drinking water sources. In this study, a skillful method access to new nanozero-valent iron @chitosan (nZVIMC) was synthesized by a facile one step method. The as-prepared nZVIMC was employed as an adsorbent for the effective removal MC-LR from aqueous solution. Transmission electron microscopy (TEM) demonstrates that nZVIMC is in quasi-spherical shape with size of around 50 nm, effect of variable parameters such as pH, contact time, initial concentration of MC-LR and adsorption properties of nZVIMC on MC-LR was further investigated. Scanning electron microscope (SEM) reveals that the particles are nearly spherical in shape with agglomeration. The results indicated that good adsorption performance was achieved at an initial pH of 5. The adsorption kinetics of nZVIMC was better fitted by pseudo-secondorder kinetics. The adsorption isotherm data was fitted well to Langmuir isotherm and then to Freundlich model, with an adsorption capacity of 68.9 mg/g at 300K. Thus, we believe that nZVIMC can be used as a low cost material for efficient removal of MC-LR from water.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 291 ◽  
Author(s):  
Dongxiao Ouyang ◽  
Yuting Zhuo ◽  
Liang Hu ◽  
Qiang Zeng ◽  
Yuehua Hu ◽  
...  

Tailings generated from mineral processing have attracted worldwide concerns due to creating serious environmental pollution. In this work, porous adsorbents were prepared as a porous block by using silicate tailings, which can adsorb heavy metal ions from the solution and are easy to separate. The synthesized silicate porous material (SPM) was characterized by X-ray diffraction (XRD), Brunner–Emmet–Teller (BET), and scanning electron microscope (SEM). The material presented a surface area of 3.40 m2⸱g−1, a porosity of 54%, and the compressive strength of 0.6 MPa. The maximum adsorption capacities of Pb2+, Cd2+, and Cu2+ by SPM were 44.83 mg·g−1, 35.36 mg·g−1, and 32.26 mg·g−1, respectively. The experimental data were fitted well by the Freundlich and Langmuir adsorption models. The kinetics of the adsorption process were fitted well by the pseudo-first order kinetic equation. These results show that the porous materials prepared with silicate tailings could act as an effective and low-cost adsorbent for the removal of heavy metal ions from wastewater. This study may provide a new thought on the high-value utilization of tailing for alleviating environmental pressure.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2012 ◽  
Vol 446-449 ◽  
pp. 537-541
Author(s):  
Li Bin Bai ◽  
Ye Na An ◽  
Ai Qing Wang ◽  
Hai Song Zhang ◽  
Xin Xin Pan ◽  
...  

The AB2 type hyperbranched poly(amine ester) (HBPAE) can be used as adsorbent to adsorb nitrite from aqueous solution due to a large number of terminal hydroxyl groups, where the hydrogen-bonds could formed between OH and NO2-. However, the hydrophilic properties of HBPAE limited their utility in the application because of the difficulties in removing adsorbent from nitrite solution after the adsorption was finished. The hydrophilic properties of the HBPAE were changed by means of end capping method, where the trichloroctadecylsilan (OTS) was adopted as the hydrophobic alkyl chains. The modified HBPAE by OTS can be separated from the aqueous solution. The adsorption kinetics of nitrite from aqueous solutions onto modified HBPAE was investigated to show the pseudo-first-order kinetic mechanism. The equilibrium adsorption data were found to be well fitted by Freundlich isotherm equation.


2017 ◽  
Vol 75 (10) ◽  
pp. 2390-2402 ◽  
Author(s):  
Bellington Mudyawabikwa ◽  
Henry H. Mungondori ◽  
Lilian Tichagwa ◽  
David M. Katwire

The aim of this study was to prepare activated carbon from tobacco stalks using microwave heating. The prepared activated carbon was applied as an adsorbent in methylene blue (MB) removal from water. The optimum conditions for activated carbon preparation were a radiation power of 280 W for a period of 6 minutes after the impregnation of the precursor material with 30% ZnCl2 for 24 hours. The activated carbon yield and iodine number were 49.43% and 1,264.51 mg/g respectively. The activated carbon also had a point of zero charge of 5.81 with an adsorption capacity of 123.45 mg/g for MB. The optimum conditions for MB adsorption were a pH of 6.5 with an adsorbent dosage of 0.2 g/50 mL at 25 °C. The MB adsorption kinetics followed the pseudo second order kinetic model with the intra-particle diffusion model suggesting a two-step adsorption mechanism. The adsorption data also fitted well within the Langmuir adsorption isotherm model. Tobacco stalks can successfully be turned into an economically important product.


Sign in / Sign up

Export Citation Format

Share Document