scholarly journals Hydrochemical evolution of pore water in riverbed sedimentation zone during riverbank infiltration

Author(s):  
Shuai Lu ◽  
Shenjie Li ◽  
Zhining Liu ◽  
Xinyue Gao ◽  
Lihua Zhang ◽  
...  

Abstract The riverbed sedimentation zone is an important zone of hydrochemistry, and the biogeochemical action in this zone has a significant impact on groundwater quality. As the main area where hydrochemistry occurs, studying the law of hydrochemical evolution within 1 m below the riverbed is of great significance for understanding the migration and removal of river pollutants. In this study, a combination of onsite monitoring and indoor experiments was used to analyze the variation characteristics of the hydrochemical composition of pore water during riverbank infiltration, as well as the main hydrochemical effects and influencing factors. The results show that in the process of river water infiltration, a series of redox reactions occur in the riverbed sedimentation zone, and there are differences in different infiltration depths. From 0 to 20 cm below the riverbed, strong respiration and denitrification mainly occurred. Reductive dissolution of manganese minerals mainly occurred from 20 to 60 cm, and reductive dissolution of iron minerals mainly occurred from 60 to 90 cm. River water level, dissolved organic carbon content and microbial activity had varying degrees of influence on these redox effects. The recharge of river water infiltration ensures the exploitation amount of the pumping wells, but it also leads to the increase of some components in groundwater, and the extracted water cannot be directly drunk.

2020 ◽  
Vol 20 (6) ◽  
pp. 1360
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Paston Sidauruk ◽  
Tantowi Eko Prayogi ◽  
Faizal Abdillah

The chemical characteristics of the Ciliwung River were analyzed to understand hydrochemical evolution. A fraction of sea water mixture and kinds of mineral controlling for chemicals were also determined. During three year investigations in 2015, 2016, and 2018, electrical conductivity increased with decreasing elevations. Two hydrochemical facies had been identified for the Ciliwung river water; those were Ca-Mg-HCO3 and Ca-Na-HCO3.  The river water mixing with seawater was recognized in the Mangga Dua site in which its water type had shifted to Na-Ca-HCO3-Cl. Based on Na-Cl contents, the fraction of sea water into the Ciliwung River reached 2% in the Mangga Dua site during the dry season and decreased to 0.7% during the rainy season in 2015. The much higher monthly rainfall during the dry season in 2016 and 2018 had washed out invading seawater from the Mangga Dua site; its fraction of sea water was less than 0.4%. Saturation indexes with respect to calcite, dolomite, and gypsum minerals showed an increasing trend related to the decreasing elevations. All water samples were undersaturated with respect to gypsum. Meanwhile, saturation indexes with respect to calcite and dolomite mostly indicated undersaturated, except in the Mangga Dua site that was saturated (during the rainy season in 2015 and dry season in 2018) and supersaturated during the dry season in 2015.


2012 ◽  
Vol 9 (11) ◽  
pp. 13155-13189
Author(s):  
S. Baram ◽  
Z. Ronen ◽  
D. Kurtzman ◽  
C. Küells ◽  
O. Dahan

Abstract. A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.


Ecotoxicology ◽  
2019 ◽  
Vol 28 (5) ◽  
pp. 528-538 ◽  
Author(s):  
Xianbin Zhu ◽  
Xian-Chun Zeng ◽  
Xiaoming Chen ◽  
Weiwei Wu ◽  
Yanxin Wang

2013 ◽  
Vol 17 (4) ◽  
pp. 1533-1545 ◽  
Author(s):  
S. Baram ◽  
Z. Ronen ◽  
D. Kurtzman ◽  
C. Külls ◽  
O. Dahan

Abstract. A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl−) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.


2020 ◽  
Vol 51 (6) ◽  
pp. 1478-1489
Author(s):  
Jiamei Wang ◽  
Yumeng Yan ◽  
Jing Bai ◽  
Xiaosi Su

Abstract The upper part of riverbed sediment is one of the key interfaces between surface water and groundwater, and biogeochemical process in this interface has a profound influence on the chemistry of infiltrated water. The lithology and permeability of bed sediment is mainly controlled by variation in river hydrodynamic conditions. However, there have been few studies of the effect of riverbed siltation on the hydrochemistry and redox reactions of infiltrated water due to the high variability in these processes and challenges associated with sampling. This study selected and examined a river channel near a site of riverbank filtration by drilling on the floating platform and conducting microelectrode testing and high-resolution sampling. The hydrodynamic and chemical characteristics of pore water in and lithologic characteristics of riverbed sediment, the siltation, and redox zone were examined and compared. Differences in hydrodynamic conditions changed the lithology of riverbed sediment, consequently affecting redox reactions during the process of river water infiltration. Variations in siltation changed the residence time of pore water and organic matter content, which ultimately resulted in differences in extension range and intensity of redox reactions. This study provides a valuable reference for understanding the effect of riverbed siltation on water quality of riverbank infiltration.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 96
Author(s):  
Rudy Rossetto ◽  
Alessio Barbagli ◽  
Giovanna De Filippis ◽  
Chiara Marchina ◽  
Thomas Vienken ◽  
...  

While ensuring adequate drinking water supply is increasingly being a worldwide challenging need, managed aquifer recharge (MAR) schemes may provide reliable solutions in order to guarantee safe and continuous supply of water. This is particularly true in riverbank filtration (RBF) schemes. Several studies aimed at addressing the treatment capabilities of such schemes, but induced aquifer recharge hydrodynamics from surface water bodies caused by pumping wells is seldom analysed and quantified. In this study, after presenting a detailed description of the Serchio River RBF site, we used a multidisciplinary approach entailing hydrodynamics, hydrochemical, and numerical modelling methods in order to evaluate the change in recharge from the Serchio river to the aquifer due to the building of the RBF infrastructures along the Serchio river (Lucca, Italy). In this way, we estimated the increase in aquifer recharge and the ratio of bank filtrate to ambient groundwater abstracted at such RBF scheme. Results highlight that in present conditions the main source of the RBF pumping wells is the Serchio River water and that the groundwater at the Sant’Alessio plain is mainly characterized by mixing between precipitation occurring in the higher part of the plain and the River water. Based on chemical mixing, a precautionary amount of abstracted Serchio River water is estimated to be on average 13.6 Mm3/year, which is 85% of the total amount of water abstracted in a year (~16 Mm3). RBF is a worldwide recognized MAR technique for supplying good quality and reliable amount of water. As in several cases and countries the induced recharge component is not duly acknowledged, the authors suggest including the term “induced” in the definition of this type of MAR technique (to become then IRBF). Thus, clear reference may be made to the fact that the bank filtration is not completely due to natural recharge, as in many cases of surface water/groundwater interactions, but it may be partly/almost all human-made.


2020 ◽  
Author(s):  
Dursun Acar ◽  
M. Sinan Ozeren ◽  
Nazmi Postacioglu ◽  
Sebnem Onder ◽  
Ulku Ulusoy ◽  
...  

<p>During the co-seismic development of a fault in lithological environments, regions containing cavities may form momentarily or permanently. In the tectonic shift zones, these pressure gaps lead to the formation of irregular new intermediate sediment zones, as infiltrate in to the gap, if the pressure perturbations are large. The semi-fluid sediment material and sea water enter through opening fault sector's surrounding sediments at the far place from dispersing fault energy burst. But pore water infiltration is independent about place of vomited energy burst. In some cases hard material which detached from fault wall or top sediment material, provide isolation lids, as obstacling on 'cell type empty interlaying gaps' at tectonic line. They can collapse again or stay as gap form for a long time with suction force after seismic activities by effects of gravitation or pressure perturbations. For durable gaps, pore water is capable to infiltrate in to the gap with long lasting suction forces.  In these regions, in contrast to gravitational folding or collapse structures, the partial sediment sequence may be drawn and folded into the area of the material with different or close lithological density value. Deformational variety of the displaced materials are related with physical properties of seismic event at opening sector such as friction, displacement parameters (velocity, time), dimensional parameters of gap, and water depth.  The main objective of the paper is to figure out all interference mechanisms about these zones (created by pressure perturbations), which develop rapidly during earthquake fractures (or in some cases fractures generated by impulsive pressure changes such as those created by volcanoes). Fracture of fault segments forms a complex mechanical system associated with bedrock, upper sedimentary sequence, and aquatic environment, depending on the location where they occur, even the atmosphere. Therefore, the displacement may be bi-directional to the lower slit or upward from the seabed during the opening or closing stages of the cavity, depending on the nature with variations of the atmosphere & water-sediment mixture. The strong (pulling or impulsive) pressure perturbation effect associated with permanent cavities caused by rapid breakage pulls the material that may form a sludge volcano or water outlet under deformation and brings the environment to near pressure equilibrium. This simple explanation can help to find real additional effective reason for the different formations of assumed collapse or folding structures created by gravitational movements in geology. The hypothesis after main objective at above mentioned in this article is based on the fact that the emergence of  escapes as squeezed fluid form  of water & sediment from compacted secondary irregularities in the previously broken fault segment will help to understand the next seismic mobility in other tectonic segments by identifying source depth cues through physical and chemical analysis. Geophysical instrumentation and applications are still need further developments of compact reflection line information, because the vertical thin anomalies mentioned in this paper are the most difficult structures for detection.</p>


2018 ◽  
Vol 8 (2) ◽  
pp. 71-73
Author(s):  
Vsevolod A. SHABANOV ◽  
Anastasia A. KHRYANINA

A brief description of the water in the Samara River is given. The data on hydrochemical parameters of the river water for the period 2005-2015 are given. Indicators are marked out, sharply changing their values in the period under review. For such studies the indicator-the oxygen concentration-was selected. It was revealed with the help of statistical methods that the series of observations under consideration is divided into two samples with diff erent sample averages. It is graphically proved that the sharp jump in oxygen concentration was due to the infl uence of solar activity. The dependence of the sulfate content in the Samara River on solar activity for the period from 2005 to 2015 was studied. Calculations have been made that prove the hypothesis of the infl uence of solar activity on the hydrochemical composition of the water of the Samara River.


1987 ◽  
Vol 19 (7) ◽  
pp. 1195-1196 ◽  
Author(s):  
C. Schaffner ◽  
M. Ahel ◽  
W. Giger

The fate of organic micropollutants during ground water infiltration is of great interest since many water works use bank filtration as a first step in the treatment of river water for public water supplies. Field and laboratory studies are necessary to enhance our knowledge on the behaviour of organic chemicals during infiltration of river water to ground water. In an earlier study nonpolar volatile compounds (e.g. tetrachloroethylene, 1,4-dichlorobenzene and 1,3-dimethylbenzene) were investigated in natural river-ground water infiltration systems in Switzerland (Schwarzenbach et al., 1983). In this poster we report on recent work using one of these field sites and studying pentachlorophenol (PCP), nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO) and nitrilotriacetate (NTA), Preliminary results will also be reported for ethylenediaminetetraacetate (EDTA) and polycyclic aromatic hydrocarbons. The field site for our investigation was in the lower Glatt Valley, Switzerland where the Glatt River infiltrates into a quarternary fluvioglacial valley fill aquifer. The Glatt River is a small, rather heavily polluted perialpine river which receives effluents from ten mechanical-biological treatment plants of municipal waste water (Ahel et al., 1984). At the field site the average discharge of the river is approximately 8 m3/sec and permanent infiltration of the river through a saturated zone can be assumed. Observation wells allowed the sampling of freshly infiltrated water at various distances (2,5 - 14 m) from the river. During one year seventeen sample series were collected at approximately monthly intervals including samples from the river and from four ground water observation wells. Pentachlorophenol was determined by a method based on the procedure by Renberg and Lindstróm (1981), Detailed descriptions of the analytical methods for NP, NP1EO, NP2EO and NTA are given elsewhere (Ahel and Giger, 1985; Schaffner and Giger, 1984). The observed averages and ranges of concentrations are given in Table 1. It was concluded that NTA is eliminated rapidly during ground water infiltration. Starting from a range of 8 to 83 mg/m3 and an average of 27 mg/m3 in the river, after 7 m of infiltration only 0.5 mg/m3 are left corresponding to an elimination of 98%. Low temperatures in winter (4 – 6 °C) and reduced oxygen contents in summer had no effect on the efficient elimination of NTA, This result is highly important in addressing the question as to what extent NTA might reach bank filtrated waters from polluted rivers. The phenolic pollutants were eliminated according to the sequence: NP1EO ≈ NP2EO > NP > PCP. This is based on the decrease of the average concentrations over the first seven meters of infiltration. In particular, PCP turned out to be rather persistent in the ground water but not to such a degree as tetrachloroethylene and other chlorinated solvents which had been studied earlier.


Sign in / Sign up

Export Citation Format

Share Document