scholarly journals Statistical modeling of spatial and temporal vulnerability of groundwater level in the Gaza Strip (Palestine)

2021 ◽  
Author(s):  
Hassan Al-Najjar ◽  
Gokmen Ceribasi ◽  
Emrah Dogan ◽  
Khalid Qahman ◽  
Mazen Abualtayef ◽  
...  

Abstract The water supply in the Gaza Strip substantially depends on the groundwater resource of the Gaza coastal aquifer. The climate changes and the over-exploiting processes negatively impact the recovery of the groundwater balance. The climate variability is characterized by the decline in the precipitation by −5.2% and an increase in the temperature by +1 °C in the timeframe of 2020–2040. The potential evaporation and the sunshine period are expected to increase by about 111 mm and 5 hours, respectively, during the next 20 years. However, the atmosphere is predicted to be drier where the relative humidity will fall by a trend of −8% in 20 years. The groundwater abstraction is predicted to increase by 55% by 2040. The response of the groundwater level to climate change and groundwater pumping was evaluated using a model of a 20-neuron ANN with a performance of the correlation coefficient (r)=0.95–0.99 and the root mean square error (RMSE)=0.09–0.21. Nowadays, the model reveals that the groundwater level ranges between −0.38 and −18.5 m and by 2040 it is expected to reach −1.13 and −28 m below MSL at the northern and southern governorates of the Gaza Strip, respectively.

Author(s):  
Hassan Al-Najjar ◽  
Gokmen Ceribasi ◽  
Emrah Dogan ◽  
Khalid Qahman ◽  
Mazen Abualtayef ◽  
...  

The Gaza coastal aquifer is a critical resource for the supply of water to the Gaza Strip and continues to be depleted as a result of the effects of climate change and the anthropogenic activities. Therefore, this study tends to investigate the impact of climate change and groundwater withdrawal practices on the oscillation of the Gaza Coastal Aquifer water table level by recruiting the power of the stochastic time-series models in exemplifying the autoregression of data and by leveraging the efficiency of the artificial neural networks (ANNs) in expressing the nonlinear regression between the different meteorological and hydrological factors. The climate stochastic models reveal that the Gaza Strip region will face a decline in the precipitation by -5.2% and an increase in the temperature by +1˚C in the timeframe of 2020-2040. The potential evaporation and the sunshine period will increase by about 111 mm and 5 hours, respectively during the next 20 years. However, the atmosphere is predicted to be drier where the relative humidity will fall by a trend of -8% in 20 years. The stochastic models developed for the groundwater abstraction time series show that the groundwater pumping processes would increase by about 55 % by 2040, compared to the 124 million cubic meters of groundwater that was withdrawn in 2020. The stochastic model of structure (2,1,5) (4,1,2)12 was defined to extend the time series of the groundwater level up to 2040. In order to form an integrated stochastic-ANN model, the combination of the time series of climate factors, groundwater abstraction and groundwater level were emerged into a one hidden layer ANN of 20-neurons. The performance of the model was high in term of training and in forecasting the future where the correlation coefficient (r) = 0.95-0.99 and the root mean square error (RMSE) = 0.09-0.21.


Author(s):  
Mahdy Jarboo ◽  
Husam Al-Najar

Purpose – This paper aims to identify the priorities on water sector planning. The priorities are identified by comparing the climate change impact on water consumption and the impact of using domestic water illegally to irrigate the urban agricultural holdings in suburban areas. Design/methodology/approach – Metered water consumption in summer and winter in both urban and suburban areas was studied in Rafah city. A backward chronological linear model of climate change (precipitation and temperature) influence on water consumption was developed using software STATISTICA 10. The developed statistical relation was used to predict the impact of various climate change scenarios for domestic water consumption. Hence, four climate change scenarios were hypothesized – an increase in temperature by 1 and 20°C and a reduction in the rainfall by 10 and 20 per cent, respectively. Findings – The most influential climate change scenario was the increase of temperature by 20°C, which caused an increase of 1.4 per cent on the average domestic water consumption compared to the current value. The hypothesized reduction of 20 per cent in precipitation caused a negligible increase in water consumption by 0.1 per cent from the current value. Urban agriculture and current practice of using municipal water to irrigate cultivated urban holdings have a significant negative influence on domestic water consumption. The aforementioned practice led to a high percentage of unaccounted for water (UFW) of 33, 38 and 45 per cent for the years 2010, 2011 and 2012, respectively. Practical implications – The concerned decision-makers should consider the right track in prioritizing dilemmas for planning water sector in suburban areas. Originality/value – This research could be considered the first of its kind because impacts of urban agriculture and climate change on domestic water consumption have never been previously considered in the Gaza Strip.


2021 ◽  
Author(s):  
Andreas Wunsch ◽  
Tanja Liesch ◽  
Stefan Broda

<p>Clear signs of climate stress on groundwater resources have been observed in recent years even in generally water-rich regions such as Germany. Severe droughts, resulting in decreased groundwater recharge, led to declining groundwater levels in many regions and even local drinking water shortages have occurred in past summers. We investigate how climate change will directly influence the groundwater resources in Germany until the year 2100. For this purpose, we use a machine learning groundwater level forecasting framework, based on Convolutional Neural Networks, which has already proven its suitability in modelling groundwater levels. We predict groundwater levels on more than 120 wells distributed over the entire area of Germany that showed strong reactions to meteorological signals in the past. The inputs are derived from the RCP8.5 scenario of six climate models, pre-selected and pre-processed by the German Meteorological Service, thus representing large parts of the range of the expected change in the next 80 years. Our models are based on precipitation and temperature and are carefully evaluated in the past and only wells with models reaching high forecasting skill scores are included in our study. We only consider natural climate change effects based on meteorological changes, while highly uncertain human factors, such as increased groundwater abstraction or irrigation effects, remain unconsidered due to a lack of reliable input data. We can show significant (p<0.05) declining groundwater levels for a large majority of the considered wells, however, at the same time we interestingly observe the opposite behaviour for a small portion of the considered locations. Further, we show mostly strong increasing variability, thus an increasing number of extreme groundwater events. The spatial patterns of all observed changes reveal stronger decreasing groundwater levels especially in the northern and eastern part of Germany, emphasizing the already existing decreasing trends in these regions</p>


2021 ◽  
Author(s):  
◽  
Craig Wayne Allen

<p>Te Hapua is a complex of small, privately owned wetlands approximately 60 km northwest of Wellington. The wetlands represent a large portion of the region's remaining palustrine swamps, which have been reduced to just 1% of the pre-1900 expanse. Whilst many land owners have opted to protect wetlands on their land with covenants, questions have been raised regarding potential threats stemming from the wider region. Firstly, some regional groundwater level records have shown significant decline in the 10 to 25 years they have been monitored. The reason for this is unclear. Wetlands are commonly associated with groundwater discharge, so a decline in groundwater level could adversely affect wetland water input. Secondly, estimated groundwater resources are currently just 8% allocated, so there is potential for a 92% increase in groundwater abstraction from aquifers that underlie the wetlands. Finally, predictions of future climate change indicate changes in rainfall quantity and intensity. This would likely alter the hydrological cycle, impacting on rainfall dependant ecosystems such as wetlands as well as groundwater recharge. Whilst previous ecological surveys at Te Hapua provide valuable information on biodiversity and ecological threat, there has been no detailed study of the hydrology of the wetlands. An understanding of the relationship between the surface water of the wetlands and the aquifers that underlie the area is important when considering the future viability of the wetlands. This study aims to define the local hydrology and assess the potential threat of 'long term' groundwater level decline, increased groundwater abstraction and predicted climate change. Eleven months of water level data was supplied by Wellington Regional Council for three newly constructed Te Hapua wetland surface water and adjacent shallow groundwater monitoring sites. The data were analysed in terms of their relative water levels and response to rainfall. A basic water balance was calculated using the data from the monitoring sites and a GIS analysis of elevation data mapped the wetlands and their watersheds. A survey of 21 individual wetlands was carried out to gather water quality and water regime data to enable an assessment of wetland class. Historical groundwater level trends and geological records were analysed in the context of potential threat to the wetlands posed by a decline in groundwater level. Climate change predictions for the Kapiti Coast were reviewed and discussed in the context of possible changes to the hydrological cycle and to wetlands. Results from the wetland survey indicated that there are two distinct bands of wetlands at Te Hapua. Fens are found mostly in the eastern band and are more likely to be discharge wetlands, some of which are ephemeral. Swamps are found mostly in the western band and are more likely to be recharge wetlands. Dominant water input to fens is via local rainfall and local through-flow of shallow groundwater, especially from surrounding dunes. The eastern band of wetlands is typified by higher dunes and hence has greater input from shallow groundwater than wetlands in the western band. Dominant water input to swamps is via local rainfall, runoff, and through-flow from the immediate watershed and adjacent wetlands. Overall, the future viability of the Te Hapua wetland complex appears promising. Historical groundwater declines appear to be minimal and show signs of reversing. Abstraction from deep aquifers is not likely to impact on wetland water levels. Climate change is likely to have an impact on the hydrological cycle and may increase pressure on some areas, especially ephemeral wetlands. The effect of climate change on groundwater level is more difficult to forecast, but may lower water level in the long term.</p>


Author(s):  
Y. N. Wen ◽  
Y. H. Che ◽  
J. Guang ◽  
Y. Q. Xie ◽  
Z. Shi ◽  
...  

Abstract. Aerosols play an important role in climate changes and environmental changes as well as on human health. ADV v3.11, ORAC v4.10, and SU v4.32 was three new versions of Advanced Along-Track Scanning Radiometer (AATSR) aerosol datasets which are published on Climate Change Initiative (CCI). In order to evaluate the accuracy of three AATSR aerosol optical depth (AOD) datasets, and to improve the spatial coverage and accuracy of AATSR AOD dataset, this study completed two works: the first part is validated the accuracy of three AOD datasets; the second part is fused three AATSR AOD datasets based on uncertainty of each dataset. After comparing with AERONET and CARSNET ground-based data over China, results show that the root-mean-square error (RMSE) for ADV v3.11, ORAC v4.10, SU v4.32 and fused AOD are 0.22, 0.17, 0.18, 0.17 respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Feihe Kong ◽  
Jinxi Song ◽  
Russell S. Crosbie ◽  
Olga Barron ◽  
David Schafer ◽  
...  

Groundwater, the most important water resource and the largest distributed store of fresh water in the world, supports sustainability of groundwater-dependent ecosystems and resilient and sustainable economy of the future. However, groundwater level decline in many parts of world has occurred as a result of a combination of climate change, land cover change and groundwater abstraction from aquifers. This study investigates the determination of the contributions of these factors to the groundwater level changes with the HydroSight model. The unconfined superficial aquifer in the Gnangara region in Western Australia was used as a case study. It was found that rainfall dominates long-term (1992–2014) groundwater level changes and the contribution rate of rainfall reduced because the rainfall decreased over time. The mean rainfall contribution rate is 77% for climate and land cover analysis and 90% for climate and pumping analysis. Secondly, the increasing groundwater pumping activities had a significant influence on groundwater level and its mean contribution rate on groundwater level decline is -23%. The land cover changes had limited influence on long-term groundwater level changes and the contribution rate is stable over time with a mean of 2%. Results also showed spatial heterogeneity: the groundwater level changes were mainly influenced by rainfall and groundwater pumping in the southern study region, and the groundwater level changes were influenced by the combination of rainfall, land cover and groundwater pumping in the northern study region. This research will assist in developing a quantitative understanding of the influences of different factors on groundwater level changes in any aquifer in the world.


2021 ◽  
Author(s):  
◽  
Craig Wayne Allen

<p>Te Hapua is a complex of small, privately owned wetlands approximately 60 km northwest of Wellington. The wetlands represent a large portion of the region's remaining palustrine swamps, which have been reduced to just 1% of the pre-1900 expanse. Whilst many land owners have opted to protect wetlands on their land with covenants, questions have been raised regarding potential threats stemming from the wider region. Firstly, some regional groundwater level records have shown significant decline in the 10 to 25 years they have been monitored. The reason for this is unclear. Wetlands are commonly associated with groundwater discharge, so a decline in groundwater level could adversely affect wetland water input. Secondly, estimated groundwater resources are currently just 8% allocated, so there is potential for a 92% increase in groundwater abstraction from aquifers that underlie the wetlands. Finally, predictions of future climate change indicate changes in rainfall quantity and intensity. This would likely alter the hydrological cycle, impacting on rainfall dependant ecosystems such as wetlands as well as groundwater recharge. Whilst previous ecological surveys at Te Hapua provide valuable information on biodiversity and ecological threat, there has been no detailed study of the hydrology of the wetlands. An understanding of the relationship between the surface water of the wetlands and the aquifers that underlie the area is important when considering the future viability of the wetlands. This study aims to define the local hydrology and assess the potential threat of 'long term' groundwater level decline, increased groundwater abstraction and predicted climate change. Eleven months of water level data was supplied by Wellington Regional Council for three newly constructed Te Hapua wetland surface water and adjacent shallow groundwater monitoring sites. The data were analysed in terms of their relative water levels and response to rainfall. A basic water balance was calculated using the data from the monitoring sites and a GIS analysis of elevation data mapped the wetlands and their watersheds. A survey of 21 individual wetlands was carried out to gather water quality and water regime data to enable an assessment of wetland class. Historical groundwater level trends and geological records were analysed in the context of potential threat to the wetlands posed by a decline in groundwater level. Climate change predictions for the Kapiti Coast were reviewed and discussed in the context of possible changes to the hydrological cycle and to wetlands. Results from the wetland survey indicated that there are two distinct bands of wetlands at Te Hapua. Fens are found mostly in the eastern band and are more likely to be discharge wetlands, some of which are ephemeral. Swamps are found mostly in the western band and are more likely to be recharge wetlands. Dominant water input to fens is via local rainfall and local through-flow of shallow groundwater, especially from surrounding dunes. The eastern band of wetlands is typified by higher dunes and hence has greater input from shallow groundwater than wetlands in the western band. Dominant water input to swamps is via local rainfall, runoff, and through-flow from the immediate watershed and adjacent wetlands. Overall, the future viability of the Te Hapua wetland complex appears promising. Historical groundwater declines appear to be minimal and show signs of reversing. Abstraction from deep aquifers is not likely to impact on wetland water levels. Climate change is likely to have an impact on the hydrological cycle and may increase pressure on some areas, especially ephemeral wetlands. The effect of climate change on groundwater level is more difficult to forecast, but may lower water level in the long term.</p>


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 162
Author(s):  
Feihe Kong ◽  
Wenjin Xu ◽  
Ruichen Mao ◽  
Dong Liang

The groundwater-dependent ecosystem in the Gnangara region is confronted with great threats due to the decline in groundwater level since the 1970s. The aim of this study is to apply multiple trend analysis methods at 351 monitoring bores to detect the trends in groundwater level using spatial, temporal and Hydrograph Analysis: Rainfall and Time Trend models, which were applied to evaluate the impacts of rainfall on the groundwater level in the Gnangara region, Western Australia. In the period of 1977–2017, the groundwater level decreased from the Gnangara’s edge to the central-north area, with a maximum trend magnitude of −0.28 m/year. The groundwater level in 1998–2017 exhibited an increasing trend in December–March and a decreasing trend in April–November with the exception of September when compared to 1978–1997. The rainfall + time model based on the cumulative annual residual rainfall technique with a one-month lag during 1990–2017 was determined as the best model. Rainfall had great impacts on the groundwater level in central Gnangara, with the highest impact coefficient being 0.00473, and the impacts reduced gradually from the central area to the boundary region. Other factors such as pine plantation, the topography and landforms, the Tamala Limestone formation, and aquifer groundwater abstraction also had important influences on the groundwater level.


Sign in / Sign up

Export Citation Format

Share Document